differencedrewrite规则

rewrite规则  时间:2021-01-12  阅读:()
Titlestata.
comarimapostestimation—PostestimationtoolsforarimaDescriptionSyntaxforpredictMenuforpredictOptionsforpredictRemarksandexamplesReferenceAlsoseeDescriptionThefollowingpostestimationcommandsareofspecialinterestafterarima:CommandDescriptionestatacplotestimateautocorrelationsandautocovariancesestatarootscheckstabilityconditionofestimatesirfcreateandanalyzeIRFspsdensityestimatethespectraldensityThefollowingstandardpostestimationcommandsarealsoavailable:CommandDescriptionestaticAkaike'sandSchwarz'sBayesianinformationcriteria(AICandBIC)estatsummarizesummarystatisticsfortheestimationsampleestatvcevariance–covariancematrixoftheestimators(VCE)estimatescatalogingestimationresultsforecastdynamicforecastsandsimulationslincompointestimates,standarderrors,testing,andinferenceforlinearcombinationsofcoefcientslrtestlikelihood-ratiotestmarginsmarginalmeans,predictivemargins,marginaleffects,andaveragemarginaleffectsmarginsplotgraphtheresultsfrommargins(proleplots,interactionplots,etc.
)nlcompointestimates,standarderrors,testing,andinferencefornonlinearcombinationsofcoefcientspredictpredictions,residuals,inuencestatistics,andotherdiagnosticmeasurespredictnlpointestimates,standarderrors,testing,andinferenceforgeneralizedpredictionstestWaldtestsofsimpleandcompositelinearhypothesestestnlWaldtestsofnonlinearhypotheses12arimapostestimation—PostestimationtoolsforarimaSyntaxforpredictpredicttypenewvarifin,statisticoptionsstatisticDescriptionMainxbpredictedvaluesformeanequation—thedifferencedseries;thedefaultstdpstandarderrorofthelinearpredictionypredictedvaluesforthemeanequationiny—theundifferencedseriesmsemeansquarederrorofthepredictedvaluesresidualsresidualsorpredictedinnovationsyresidualsresidualsorpredictedinnovationsiny,reversinganytime-seriesoperatorsThesestatisticsareavailablebothinandoutofsample;typepredict.
.
.
ife(sample).
.
.
ifwantedonlyfortheestimationsample.
PredictionsarenotavailableforconditionalARIMAmodelsttopaneldata.
optionsDescriptionOptionsdynamic(timeconstant)howtohandlethelagsofytt0(timeconstant)setstartingpointfortherecursionstotimeconstantstructuralcalculateconsideringthestructuralcomponentonlytimeconstantisa#oratimeliteral,suchastd(1jan1995)ortq(1995q1);seeConvenientlytypingSIFvaluesin[D]datetime.
MenuforpredictStatistics>Postestimation>Predictions,residuals,etc.
OptionsforpredictFivestatisticscanbecomputedusingpredictafterarima:thepredictionsfromthemodel(thedefaultalsogivenbyxb),thepredictionsafterreversinganytime-seriesoperatorsappliedtothedependentvariable(y),theMSEofxb(mse),thepredictionsofresidualsorinnovations(residual),andthepredictedresidualsorinnovationsintermsofy(yresiduals).
GiventhedynamicnatureoftheARMAcomponentandbecausethedependentvariablemightbedifferenced,thereareotherwaysofcomputingeach.
Wecanuseallthedataonthedependentvariablethatisavailablerightuptothetimeofeachprediction(thedefault,whichisoftencalledaone-stepprediction),orwecanusethedatauptoaparticulartime,afterwhichthepredictedvalueofthedependentvariableisusedrecursivelytomakelaterpredictions(dynamic()).
Eitherway,wecanconsiderorignoretheARMAdisturbancecomponent(thecomponentisconsideredbydefaultandisignoredifyouspecifystructural).
Allcalculationscanbemadeinoroutofsample.
arimapostestimation—Postestimationtoolsforarima3Mainxb,thedefault,calculatesthepredictionsfromthemodel.
IfD.
depvaristhedependentvariable,thesepredictionsareofD.
depvarandnotofdepvaritself.
stdpcalculatesthestandarderrorofthelinearpredictionxb.
stdpdoesnotincludethevariationarisingfromthedisturbanceequation;usemsetocalculatestandarderrorsandcondencebandsaroundthepredictedvalues.
yspeciesthatpredictionsofdepvarbemade,evenifthemodelwasspeciedintermsof,say,D.
depvar.
msecalculatestheMSEofthepredictions.
residualscalculatestheresiduals.
Ifnootheroptionsarespecied,thesearethepredictedinnovationst;thatis,theyincludetheARMAcomponent.
Ifstructuralisspecied,thesearetheresidualstfromthestructuralequation;seestructuralbelow.
yresidualscalculatestheresidualsintermsofdepvar,evenifthemodelwasspeciedintermsof,say,D.
depvar.
Aswithresiduals,theyresidualsarecomputedfromthemodel,includinganyARMAcomponent.
Ifstructuralisspecied,anyARMAcomponentisignored,andyresidualsaretheresidualsfromthestructuralequation;seestructuralbelow.
Optionsdynamic(timeconstant)specieshowlagsofytinthemodelaretobehandled.
Ifdynamic()isnotspecied,actualvaluesareusedeverywherethatlaggedvaluesofytappearinthemodeltoproduceone-step-aheadforecasts.
dynamic(timeconstant)producesdynamic(alsoknownasrecursive)forecasts.
timeconstantspecieswhentheforecastistoswitchfromonestepaheadtodynamic.
Indynamicforecasts,referencestoytevaluatetothepredictionofytforallperiodsatoraftertimeconstant;theyevaluatetotheactualvalueofytforallpriorperiods.
Forexample,dynamic(10)wouldcalculatepredictionsinwhichanyreferencetoytwitht00otherwisemeaningthatpredictnewvar,xbcalculatespredictionsbyusingthemetricofthedependentvariable.
Inthisexample,thedependentvariablerepresentedchangesinln(wpit),andsothepredictionsarelikewiseforchangesinthatvariable.
Ifweinsteaduse.
predicty,yStatacomputesytasyt=xbt+ln(wpit1)sothatytrepresentsthepredictedlevelsofln(wpit).
Ingeneral,predictnewvar,ywillreverseanytime-seriesoperatorsappliedtothedependentvariableduringestimation.
IfwewanttoignoretheARMAerrorcomponentswhenmakingpredictions,weusethestructuraloption,.
predictxbs,xbstructuralwhichgeneratesxbst=β0becausetherearenoregressorsinthismodel,and.
predictys,ystructuralgeneratesyst=β0+ln(wpit1)arimapostestimation—Postestimationtoolsforarima5Example1:DynamicforecastsAnattractivefeatureofthearimacommandistheabilitytomakedynamicforecasts.
Inexample4of[TS]arima,wetthemodelconsumpt=β0+β1m2t+tt=ρt1+θt1+tFirst,weretthemodelbyusingdataupthroughtherstquarterof1978,andthenwewillevaluatetheone-step-aheadanddynamicforecasts.
.
usehttp://www.
stata-press.
com/data/r13/friedman2.
keepiftimechi2=0.
0000OPGDS4.
lnm1Coef.
Std.
Err.
zP>|z|[95%Conf.
Interval]ARMAarL1.
.
3551862.
05030117.
060.
000.
2565979.
4537745L4.
-.
3275808.
0594953-5.
510.
000-.
4441895-.
210972/sigma.
0112678.
000488223.
080.
000.
0103109.
0122246Note:Thetestofthevarianceagainstzeroisonesided,andthetwo-sidedconfidenceintervalistruncatedatzero.
.
irfcreatenonseasonal,set(myirf)step(30)(filemyirf.
irfcreated)(filemyirf.
irfnowactive)(filemyirf.
irfupdated)WetthefollowingseasonalARIMAmodel(1ρ1L)(1ρ4,1L4)4lnm1t=tThecodebelowtsthisnonseasonalARIMAmodelandsavesasetofIRFresultstotheactiveIRFle,whichismyirf.
irf.
.
arimaDS4.
lnm1,ar(1)mar(1,4)noconstantnologARIMAregressionSample:1961q2-2008q2Numberofobs=189Waldchi2(2)=119.
78Loglikelihood=588.
6689Prob>chi2=0.
0000OPGDS4.
lnm1Coef.
Std.
Err.
zP>|z|[95%Conf.
Interval]ARMAarL1.
.
489277.
05380339.
090.
000.
3838245.
5947296ARMA4arL1.
-.
4688653.
0601248-7.
800.
000-.
5867076-.
3510229/sigma.
0107075.
000474722.
560.
000.
0097771.
0116379Note:Thetestofthevarianceagainstzeroisonesided,andthetwo-sidedconfidenceintervalistruncatedatzero.
.
irfcreateseasonal,step(30)(filemyirf.
irfupdated)8arimapostestimation—PostestimationtoolsforarimaWenowhavetwosetsofIRFresultsinthelemyirf.
irf.
WecangraphbothIRFfunctionssidebysidebycallingirfgraph.
.
irfgraphirfThetrajectoriesoftheIRFfunctionsaresimilar:eachgureshowsthatashocktolnm1causesatemporaryoscillationinlnm1thatdiesoutafterabout15timeperiods.
Thisbehaviorischaracteristicofshort-memoryprocesses.
See[TS]psdensityforanintroductiontoestimatingspectraldensitiesusingtheparametersestimatedbyarima.
ReferenceEnders,W.
2004.
AppliedEconometricTimeSeries.
2nded.
NewYork:Wiley.
Alsosee[TS]arima—ARIMA,ARMAX,andotherdynamicregressionmodels[TS]estatacplot—Plotparametricautocorrelationandautocovariancefunctions[TS]estataroots—CheckthestabilityconditionofARIMAestimates[TS]irf—CreateandanalyzeIRFs,dynamic-multiplierfunctions,andFEVDs[TS]psdensity—Parametricspectraldensityestimationafterarima,arma,anducm[U]20Estimationandpostestimationcommands

香港 1核 1G 5M 22元/月 美国 1核 512M 15M 19.36元/月 轻云互联

轻云互联成立于2018年的国人商家,广州轻云互联网络科技有限公司旗下品牌,主要从事VPS、虚拟主机等云计算产品业务,适合建站、新手上车的值得选择,香港三网直连(电信CN2GIA联通移动CN2直连);美国圣何塞(回程三网CN2GIA)线路,所有产品均采用KVM虚拟技术架构,高效售后保障,稳定多年,高性能可用,网络优质,为您的业务保驾护航。官方网站:点击进入广州轻云网络科技有限公司活动规则:用户购买任...

7月RAKsmart独立服务器和站群服务器多款促销 G口不限量更低

如果我们熟悉RAKsmart商家促销活动的应该是清楚的,每个月的活动看似基本上一致。但是有一些新品或者每个月还是有一些各自的特点的。比如七月份爆款I3-2120仅30美金、V4新品上市,活动期间5折、洛杉矶+硅谷+香港+日本站群恢复销售、G口不限流量服务器比六月份折扣力度更低。RAKsmart 商家这个月依旧还是以独立服务器和站群服务器为主。当然也包括有部分的低至1.99美元的VPS主机。第一、I...

SoftShellWeb:台湾(台北)VPS年付49美元起,荷兰VPS年付24美元起

SoftShellWeb是一家2019年成立的国外主机商,商家在英格兰注册,提供的产品包括虚拟主机和VPS,其中VPS基于KVM架构,采用SSD硬盘,提供IPv4+IPv6,可选美国(圣何塞)、荷兰(阿姆斯特丹)和台湾(台北)等机房。商家近期推出台湾和荷兰年付特价VPS主机,其中台湾VPS最低年付49美元,荷兰VPS年付24美元起。台湾VPSCPU:1core内存:2GB硬盘:20GB SSD流量...

rewrite规则为你推荐
域名注册查询如何查域名注册信息网站服务器租用网站的服务器买哪里的最好,还有租用一年大概多少钱???急!!!深圳网站空间怎么样建立网站虚拟主机管理系统我也想和你学虚拟主机管理系统的操作虚拟主机系统虚拟主机上的系统与电脑操作系统差别?山东虚拟主机山东东营制作网站的公司在哪里?虚拟主机提供商虚拟主机必须与域名提供商在一家买吗?域名解析域名解析是什么意思为什么要域名解析?免费域名免费域名是什么新网域名新网域名怎么样
主机优惠码 edgecast siteground 韩国空间 java主机 免备案cdn 线路工具 阿里校园 域名和空间 美国在线代理服务器 免费高速空间 万网空间购买 shuang12 免费asp空间 智能dns解析 电信网络测速器 百度云空间 重庆服务器 数据湾 hdsky 更多