differencedrewrite规则

rewrite规则  时间:2021-01-12  阅读:()
Titlestata.
comarimapostestimation—PostestimationtoolsforarimaDescriptionSyntaxforpredictMenuforpredictOptionsforpredictRemarksandexamplesReferenceAlsoseeDescriptionThefollowingpostestimationcommandsareofspecialinterestafterarima:CommandDescriptionestatacplotestimateautocorrelationsandautocovariancesestatarootscheckstabilityconditionofestimatesirfcreateandanalyzeIRFspsdensityestimatethespectraldensityThefollowingstandardpostestimationcommandsarealsoavailable:CommandDescriptionestaticAkaike'sandSchwarz'sBayesianinformationcriteria(AICandBIC)estatsummarizesummarystatisticsfortheestimationsampleestatvcevariance–covariancematrixoftheestimators(VCE)estimatescatalogingestimationresultsforecastdynamicforecastsandsimulationslincompointestimates,standarderrors,testing,andinferenceforlinearcombinationsofcoefcientslrtestlikelihood-ratiotestmarginsmarginalmeans,predictivemargins,marginaleffects,andaveragemarginaleffectsmarginsplotgraphtheresultsfrommargins(proleplots,interactionplots,etc.
)nlcompointestimates,standarderrors,testing,andinferencefornonlinearcombinationsofcoefcientspredictpredictions,residuals,inuencestatistics,andotherdiagnosticmeasurespredictnlpointestimates,standarderrors,testing,andinferenceforgeneralizedpredictionstestWaldtestsofsimpleandcompositelinearhypothesestestnlWaldtestsofnonlinearhypotheses12arimapostestimation—PostestimationtoolsforarimaSyntaxforpredictpredicttypenewvarifin,statisticoptionsstatisticDescriptionMainxbpredictedvaluesformeanequation—thedifferencedseries;thedefaultstdpstandarderrorofthelinearpredictionypredictedvaluesforthemeanequationiny—theundifferencedseriesmsemeansquarederrorofthepredictedvaluesresidualsresidualsorpredictedinnovationsyresidualsresidualsorpredictedinnovationsiny,reversinganytime-seriesoperatorsThesestatisticsareavailablebothinandoutofsample;typepredict.
.
.
ife(sample).
.
.
ifwantedonlyfortheestimationsample.
PredictionsarenotavailableforconditionalARIMAmodelsttopaneldata.
optionsDescriptionOptionsdynamic(timeconstant)howtohandlethelagsofytt0(timeconstant)setstartingpointfortherecursionstotimeconstantstructuralcalculateconsideringthestructuralcomponentonlytimeconstantisa#oratimeliteral,suchastd(1jan1995)ortq(1995q1);seeConvenientlytypingSIFvaluesin[D]datetime.
MenuforpredictStatistics>Postestimation>Predictions,residuals,etc.
OptionsforpredictFivestatisticscanbecomputedusingpredictafterarima:thepredictionsfromthemodel(thedefaultalsogivenbyxb),thepredictionsafterreversinganytime-seriesoperatorsappliedtothedependentvariable(y),theMSEofxb(mse),thepredictionsofresidualsorinnovations(residual),andthepredictedresidualsorinnovationsintermsofy(yresiduals).
GiventhedynamicnatureoftheARMAcomponentandbecausethedependentvariablemightbedifferenced,thereareotherwaysofcomputingeach.
Wecanuseallthedataonthedependentvariablethatisavailablerightuptothetimeofeachprediction(thedefault,whichisoftencalledaone-stepprediction),orwecanusethedatauptoaparticulartime,afterwhichthepredictedvalueofthedependentvariableisusedrecursivelytomakelaterpredictions(dynamic()).
Eitherway,wecanconsiderorignoretheARMAdisturbancecomponent(thecomponentisconsideredbydefaultandisignoredifyouspecifystructural).
Allcalculationscanbemadeinoroutofsample.
arimapostestimation—Postestimationtoolsforarima3Mainxb,thedefault,calculatesthepredictionsfromthemodel.
IfD.
depvaristhedependentvariable,thesepredictionsareofD.
depvarandnotofdepvaritself.
stdpcalculatesthestandarderrorofthelinearpredictionxb.
stdpdoesnotincludethevariationarisingfromthedisturbanceequation;usemsetocalculatestandarderrorsandcondencebandsaroundthepredictedvalues.
yspeciesthatpredictionsofdepvarbemade,evenifthemodelwasspeciedintermsof,say,D.
depvar.
msecalculatestheMSEofthepredictions.
residualscalculatestheresiduals.
Ifnootheroptionsarespecied,thesearethepredictedinnovationst;thatis,theyincludetheARMAcomponent.
Ifstructuralisspecied,thesearetheresidualstfromthestructuralequation;seestructuralbelow.
yresidualscalculatestheresidualsintermsofdepvar,evenifthemodelwasspeciedintermsof,say,D.
depvar.
Aswithresiduals,theyresidualsarecomputedfromthemodel,includinganyARMAcomponent.
Ifstructuralisspecied,anyARMAcomponentisignored,andyresidualsaretheresidualsfromthestructuralequation;seestructuralbelow.
Optionsdynamic(timeconstant)specieshowlagsofytinthemodelaretobehandled.
Ifdynamic()isnotspecied,actualvaluesareusedeverywherethatlaggedvaluesofytappearinthemodeltoproduceone-step-aheadforecasts.
dynamic(timeconstant)producesdynamic(alsoknownasrecursive)forecasts.
timeconstantspecieswhentheforecastistoswitchfromonestepaheadtodynamic.
Indynamicforecasts,referencestoytevaluatetothepredictionofytforallperiodsatoraftertimeconstant;theyevaluatetotheactualvalueofytforallpriorperiods.
Forexample,dynamic(10)wouldcalculatepredictionsinwhichanyreferencetoytwitht00otherwisemeaningthatpredictnewvar,xbcalculatespredictionsbyusingthemetricofthedependentvariable.
Inthisexample,thedependentvariablerepresentedchangesinln(wpit),andsothepredictionsarelikewiseforchangesinthatvariable.
Ifweinsteaduse.
predicty,yStatacomputesytasyt=xbt+ln(wpit1)sothatytrepresentsthepredictedlevelsofln(wpit).
Ingeneral,predictnewvar,ywillreverseanytime-seriesoperatorsappliedtothedependentvariableduringestimation.
IfwewanttoignoretheARMAerrorcomponentswhenmakingpredictions,weusethestructuraloption,.
predictxbs,xbstructuralwhichgeneratesxbst=β0becausetherearenoregressorsinthismodel,and.
predictys,ystructuralgeneratesyst=β0+ln(wpit1)arimapostestimation—Postestimationtoolsforarima5Example1:DynamicforecastsAnattractivefeatureofthearimacommandistheabilitytomakedynamicforecasts.
Inexample4of[TS]arima,wetthemodelconsumpt=β0+β1m2t+tt=ρt1+θt1+tFirst,weretthemodelbyusingdataupthroughtherstquarterof1978,andthenwewillevaluatetheone-step-aheadanddynamicforecasts.
.
usehttp://www.
stata-press.
com/data/r13/friedman2.
keepiftimechi2=0.
0000OPGDS4.
lnm1Coef.
Std.
Err.
zP>|z|[95%Conf.
Interval]ARMAarL1.
.
3551862.
05030117.
060.
000.
2565979.
4537745L4.
-.
3275808.
0594953-5.
510.
000-.
4441895-.
210972/sigma.
0112678.
000488223.
080.
000.
0103109.
0122246Note:Thetestofthevarianceagainstzeroisonesided,andthetwo-sidedconfidenceintervalistruncatedatzero.
.
irfcreatenonseasonal,set(myirf)step(30)(filemyirf.
irfcreated)(filemyirf.
irfnowactive)(filemyirf.
irfupdated)WetthefollowingseasonalARIMAmodel(1ρ1L)(1ρ4,1L4)4lnm1t=tThecodebelowtsthisnonseasonalARIMAmodelandsavesasetofIRFresultstotheactiveIRFle,whichismyirf.
irf.
.
arimaDS4.
lnm1,ar(1)mar(1,4)noconstantnologARIMAregressionSample:1961q2-2008q2Numberofobs=189Waldchi2(2)=119.
78Loglikelihood=588.
6689Prob>chi2=0.
0000OPGDS4.
lnm1Coef.
Std.
Err.
zP>|z|[95%Conf.
Interval]ARMAarL1.
.
489277.
05380339.
090.
000.
3838245.
5947296ARMA4arL1.
-.
4688653.
0601248-7.
800.
000-.
5867076-.
3510229/sigma.
0107075.
000474722.
560.
000.
0097771.
0116379Note:Thetestofthevarianceagainstzeroisonesided,andthetwo-sidedconfidenceintervalistruncatedatzero.
.
irfcreateseasonal,step(30)(filemyirf.
irfupdated)8arimapostestimation—PostestimationtoolsforarimaWenowhavetwosetsofIRFresultsinthelemyirf.
irf.
WecangraphbothIRFfunctionssidebysidebycallingirfgraph.
.
irfgraphirfThetrajectoriesoftheIRFfunctionsaresimilar:eachgureshowsthatashocktolnm1causesatemporaryoscillationinlnm1thatdiesoutafterabout15timeperiods.
Thisbehaviorischaracteristicofshort-memoryprocesses.
See[TS]psdensityforanintroductiontoestimatingspectraldensitiesusingtheparametersestimatedbyarima.
ReferenceEnders,W.
2004.
AppliedEconometricTimeSeries.
2nded.
NewYork:Wiley.
Alsosee[TS]arima—ARIMA,ARMAX,andotherdynamicregressionmodels[TS]estatacplot—Plotparametricautocorrelationandautocovariancefunctions[TS]estataroots—CheckthestabilityconditionofARIMAestimates[TS]irf—CreateandanalyzeIRFs,dynamic-multiplierfunctions,andFEVDs[TS]psdensity—Parametricspectraldensityestimationafterarima,arma,anducm[U]20Estimationandpostestimationcommands

wordpress通用企业主题 wordpress高级企业自适应主题

wordpress高级企业自适应主题,通用型企业展示平台 + 流行宽屏设计,自适应PC+移动端屏幕设备,完美企业站功能体验+高效的自定义设置平台。一套完美自适应多终端移动屏幕设备的WordPress高级企业自适应主题, 主题设置模块包括:基本设置、首页设置、社会化网络设置、底部设置、SEO设置; 可以自定义设置网站通用功能模块、相关栏目、在线客服及更多网站功能。点击进入:wordpress高级企业...

piayun(pia云)240元/季起云服务器,香港限时季付活动,cn2线路,4核4G15M

pia云怎么样?pia云是一家2018的开办的国人商家,原名叫哔哔云,目前整合到了魔方云平台上,商家主要销售VPS服务,采用KVM虚拟架构 ,机房有美国洛杉矶、中国香港和深圳地区,洛杉矶为crea机房,三网回程CN2 GIA,带20G防御。目前,Pia云优惠促销,年付全场8折起,香港超极速CN2季付活动,4核4G15M云服务器仅240元/季起,香港CN2、美国三网CN2深圳BGP优质云服务器超高性...

HostYun(22元/月)全场88折优惠香港原生IP大带宽

在之前的一些文章中有提到HostYun商家的信息,这个商家源头是比较老的,这两年有更换新的品牌域名。在陆续的有新增机房,价格上还是走的低价格路线,所以平时的折扣力度已经是比较低的。在前面我也有介绍到提供九折优惠,这个品牌商家就是走的低价量大为主。中秋节即将到,商家也有推出稍微更低的88折。全场88折优惠码:moon88这里,整理部分HostYun商家的套餐。所有的价格目前都是原价,我们需要用折扣码...

rewrite规则为你推荐
租用主机哪个平台可以租电脑免费云主机免费网络云主机怎么申请免费vps服务器有没有便宜的vps,最好是免费的台湾vps台湾服务器租用托管那里好台湾vps台湾服务器 哪里稳定速度快?台湾主机香港,美国,台湾,韩国,日本主机到底哪个好网站空间购买网站空间购买注意事项网站空间购买企业网站空间购买的网站空间具体需要多大的合适?网站空间价格我想自己弄个小网站,但我不会懂域名和买空间价格,便宜一点的一共要多少钱?便宜虚拟主机麻烦各位给我推荐一个比较便宜的虚拟主机,要质量好的。谢谢大家了
云南虚拟主机 域名交易 万网域名证书查询 kvmla bbr 163网 日志分析软件 美国php主机 商家促销 彩虹ip 国外在线代理 湖南服务器托管 bgp双线 七夕快乐英文 百度云1t 电信虚拟主机 linux使用教程 中国域名 畅行云 lamp什么意思 更多