配置rip协议

rip协议  时间:2021-05-02  阅读:()
i目录1OSPF·1-11.
1OSPF简介1-11.
1.
1OSPF的特点·1-11.
1.
2OSPF报文类型1-11.
1.
3LSA类型·1-11.
1.
4OSPF区域·1-21.
1.
5路由器类型·1-41.
1.
6路由类型1-51.
1.
7OSPF路由的计算过程1-51.
1.
8OSPF的网络类型·1-61.
1.
9DR/BDR·1-61.
1.
10协议规范1-71.
2OSPF配置任务简介·1-81.
3使能OSPF功能·1-91.
3.
1配置准备1-91.
3.
2使能OSPF功能1-91.
4配置OSPF区域·1-101.
4.
1配置准备1-101.
4.
2配置Stub区域·1-111.
4.
3配置NSSA区域1-111.
4.
4配置虚连接·1-121.
5配置OSPF的网络类型1-131.
5.
1配置准备1-131.
5.
2配置OSPF接口网络类型为广播·1-131.
5.
3配置OSPF接口网络类型为NBMA·1-141.
5.
4配置OSPF接口网络类型为P2MP1-141.
5.
5配置OSPF接口网络类型为P2P1-151.
6配置OSPF的路由信息控制·1-151.
6.
1配置准备1-151.
6.
2配置OSPF路由聚合1-151.
6.
3配置OSPF对通过接收到的LSA计算出来的路由信息进行过滤1-161.
6.
4配置过滤Type-3LSA1-171.
6.
5配置OSPF接口的开销值·1-171.
6.
6配置OSPF最大等价路由条数·1-181.
6.
7配置OSPF协议的优先级·1-181.
6.
8配置OSPF引入外部路由·1-191.
6.
9配置发布一条主机路由1-20ii1.
7调整和优化OSPF网络·1-211.
7.
1配置准备1-211.
7.
2配置OSPF报文定时器1-211.
7.
3配置接口传送LSA的延迟时间·1-221.
7.
4配置SPF计算时间间隔·1-221.
7.
5配置LSA重复到达的最小时间间隔·1-231.
7.
6配置LSA重新生成的时间间隔·1-231.
7.
7禁止接口收发OSPF报文·1-241.
7.
8配置Stub路由器1-241.
7.
9配置OSPF验证1-251.
7.
10配置DD报文中的MTU·1-271.
7.
11配置LSDB中ExternalLSA的最大数量1-271.
7.
12配置兼容RFC1583的外部路由选择规则1-271.
7.
13配置邻居状态变化的输出开关·1-281.
7.
14配置OSPF网管功能·1-281.
7.
15使能日志功能·1-291.
7.
16使能OpaqueLSA发布接收能力·1-291.
7.
17配置OSPF优先接收并处理Hello报文·1-291.
7.
18配置接口发送LSU报文的时间间隔和一次发送LSU报文的最大个数·1-291.
7.
19配置OSPF报文的DSCP优先级·1-301.
7.
20配置OSPFISPF·1-301.
8配置OSPF快速重路由1-311.
9配置OSPFGR·1-321.
9.
1配置GRRestarter1-331.
9.
2配置GRHelper1-341.
9.
3以GR方式重启OSPF进程·1-341.
10配置OSPFNSR·1-351.
11配置OSPF与BFD联动·1-351.
11.
1control报文双向检测·1-351.
11.
2echo报文单跳检测1-361.
12OSPF显示和维护1-361.
13OSPF典型配置举例·1-371.
13.
1配置OSPF基本功能·1-371.
13.
2配置OSPF引入自治系统外部路由1-401.
13.
3配置OSPF发布聚合路由·1-421.
13.
4配置OSPF的Stub区域1-441.
13.
5配置OSPF的NSSA区域·1-471.
13.
6配置OSPF的DR选择1-481.
13.
7配置OSPF虚连接·1-521.
13.
8OSPFGR配置举例·1-54iii1.
13.
9OSPFNSR配置举例·1-561.
13.
10配置路由过滤·1-581.
13.
11OSPF快速重路由配置举例1-601.
13.
12配置OSPF与BFD联动1-621.
14常见配置错误举例1-651.
14.
1OSPF邻居无法建立1-651.
14.
2OSPF路由信息不正确1-651-11OSPF1.
1OSPF简介OSPF(OpenShortestPathFirst,开放最短路径优先)是IETF(InternetEngineeringTaskForce,互联网工程任务组)组织开发的一个基于链路状态的内部网关协议.
目前针对IPv4协议使用的是OSPFVersion2.
本章若没有特别说明,下文中所提到的OSPF均指OSPFVersion2.
1.
1.
1OSPF的特点OSPF具有如下特点:适应范围广:支持各种规模的网络,最多可支持几百台路由器.
快速收敛:在网络的拓扑结构发生变化后立即发送更新报文,使这一变化在自治系统中同步.
无自环:由于OSPF根据收集到的链路状态用最短路径树算法计算路由,从算法本身保证了不会生成自环路由.
区域划分:允许自治系统的网络被划分成区域来管理.
路由器链路状态数据库的减小降低了内存的消耗和CPU的负担;区域间传送路由信息的减少降低了网络带宽的占用.
等价路由:支持到同一目的地址的多条等价路由.
路由分级:使用4类不同的路由,按优先顺序来说分别是:区域内路由、区域间路由、第一类外部路由、第二类外部路由.
支持验证:支持基于区域和接口的报文验证,以保证报文交互和路由计算的安全性.
组播发送:在某些类型的链路上以组播地址发送协议报文,减少对其他设备的干扰.
1.
1.
2OSPF报文类型OSPF协议报文直接封装为IP报文,协议号为89.
OSPF有五种类型的协议报文:Hello报文:周期性发送,用来发现和维持OSPF邻居关系,以及进行DR(DesignatedRouter,指定路由器)/BDR(BackupDesignatedRouter,备份指定路由器)的选举.
DD(DatabaseDescription,数据库描述)报文:描述了本地LSDB(LinkStateDatabase,链路状态数据库)中每一条LSA(LinkStateAdvertisement,链路状态通告)的摘要信息,用于两台路由器进行数据库同步.
LSR(LinkStateRequest,链路状态请求)报文:向对方请求所需的LSA.
两台路由器互相交换DD报文之后,得知对端的路由器有哪些LSA是本地的LSDB所缺少的,这时需要发送LSR报文向对方请求所需的LSA.
LSU(LinkStateUpdate,链路状态更新)报文:向对方发送其所需要的LSA.
LSAck(LinkStateAcknowledgment,链路状态确认)报文:用来对收到的LSA进行确认.
1.
1.
3LSA类型OSPF中对链路状态信息的描述都是封装在LSA中发布出去,常用的LSA有以下几种类型:1-2RouterLSA(Type1):由每个路由器产生,描述路由器的链路状态和开销,在其始发的区域内传播.
NetworkLSA(Type2):由DR产生,描述本网段所有路由器的链路状态,在其始发的区域内传播.
NetworkSummaryLSA(Type3):由ABR(AreaBorderRouter,区域边界路由器)产生,描述区域内某个网段的路由,并通告给其他区域.
ASBRSummaryLSA(Type4):由ABR产生,描述到ASBR(AutonomousSystemBoundaryRouter,自治系统边界路由器)的路由,通告给相关区域.
ASExternalLSA(Type5):由ASBR产生,描述到AS(AutonomousSystem,自治系统)外部的路由,通告到所有的区域(除了Stub区域和NSSA区域).
NSSAExternalLSA(Type7):由NSSA(Not-So-StubbyArea)区域内的ASBR产生,描述到AS外部的路由,仅在NSSA区域内传播.
OpaqueLSA:用于OSPF的扩展通用机制,目前有Type9、Type10和Type11三种.
其中,Type9仅在本地链路范围进行泛洪,用于支持GR(GracefulRestart,平滑重启)的GraceLSA就是Type9的一种类型;Type10仅在区域范围进行泛洪,用于支持MPLSTE的LSA就是Type10的一种类型;Type11可以在一个自治系统范围进行泛洪.
1.
1.
4OSPF区域1.
区域划分随着网络规模日益扩大,当一个大型网络中的路由器都运行OSPF协议时,LSDB会占用大量的存储空间,并使得运行SPF(ShortestPathFirst,最短路径优先)算法的复杂度增加,导致CPU负担加重.
在网络规模增大之后,拓扑结构发生变化的概率也增大,网络会经常处于"振荡"之中,造成网络中会有大量的OSPF协议报文在传递,降低了网络的带宽利用率.
更为严重的是,每一次变化都会导致网络中所有的路由器重新进行路由计算.
OSPF协议通过将自治系统划分成不同的区域来解决上述问题.
区域是从逻辑上将路由器划分为不同的组,每个组用区域号来标识.
如图1-1所示.
图1-1OSPF区域划分Area0Area1Area2Area3Area41-3区域的边界是路由器,而不是链路.
一个路由器可以属于不同的区域,但是一个网段(链路)只能属于一个区域,或者说每个运行OSPF的接口必须指明属于哪一个区域.
划分区域后,可以在区域边界路由器上进行路由聚合,以减少通告到其他区域的LSA数量,还可以将网络拓扑变化带来的影响最小化.
2.
骨干区域与虚连接(1)骨干区域(BackboneArea)OSPF划分区域之后,并非所有的区域都是平等的关系.
其中有一个区域是与众不同的,它的区域号是0,通常被称为骨干区域.
骨干区域负责区域之间的路由,非骨干区域之间的路由信息必须通过骨干区域来转发.
对此,OSPF有两个规定:所有非骨干区域必须与骨干区域保持连通;骨干区域自身也必须保持连通.
但在实际应用中,可能会因为各方面条件的限制,无法满足这个要求.
这时可以通过配置OSPF虚连接予以解决.
(2)虚连接(VirtualLink)虚连接是指在两台ABR之间通过一个非骨干区域而建立的一条逻辑上的连接通道.
它的两端必须是ABR,而且必须在两端同时配置方可生效.
为虚连接两端提供一条非骨干区域内部路由的区域称为传输区(TransitArea).
在图1-2中,Area2与骨干区域之间没有直接相连的物理链路,但可以在ABR上配置虚连接,使Area2通过一条逻辑链路与骨干区域保持连通.
图1-2虚连接示意图之一虚连接的另外一个应用是提供冗余的备份链路,当骨干区域因链路故障不能保持连通时,通过虚连接仍然可以保证骨干区域在逻辑上的连通性.
如图1-3所示.
图1-3虚连接示意图之二虚连接相当于在两个ABR之间形成了一个点到点的连接,因此,在这个连接上,和物理接口一样可以配置接口的各参数,如发送Hello报文间隔等.
两台ABR之间直接传递OSPF报文信息,它们之间的OSPF路由器只是起到一个转发报文的作用.
由于协议报文的目的地址不是中间这些路由器,所以这些报文对于它们而言是透明的,只是当作普通的IP报文来转发.
Area0Area1VirtuallinkR2R11-43.
Stub区域和TotallyStub区域Stub区域是一些特定的区域,该区域的ABR会将区域间的路由信息传递到本区域,但不会引入自治系统外部路由,区域中路由器的路由表规模以及LSA数量都会大大减少.
为保证到自治系统外的路由依旧可达,该区域的ABR将生成一条Type3缺省路由,发布给本区域中的其他非ABR路由器.
为了进一步减少Stub区域中路由器的路由表规模以及LSA数量,可以将该区域配置为TotallyStub(完全Stub)区域,该区域的ABR不会将区域间的路由信息和自治系统外部路由信息传递到本区域.
为保证到本自治系统的其他区域和自治系统外的路由依旧可达,该区域的ABR将生成一条Type3缺省路由,发布给本区域中的其他非ABR路由器.
4.
NSSA区域和TotallyNSSA区域NSSA(Not-So-StubbyArea)区域是Stub区域的变形,与Stub区域的区别在于NSSA区域允许引入自治系统外部路由,由ASBR发布Type7LSA通告给本区域.
当Type7LSA到达NSSA的ABR时,由ABR将Type7LSA转换成Type5LSA,传播到其他区域.
可以将该区域配置为TotallyNSSA(完全NSSA)区域,该区域的ABR不会将区域间的路由信息传递到本区域.
为保证到本自治系统的其他区域的路由依旧可达,该区域的ABR将生成一条Type3缺省路由,发布给本区域中的其他非ABR路由器.
如图1-4所示,运行OSPF协议的自治系统包括3个区域:区域0、区域1和区域2,另外两个自治系统运行RIP协议.
区域1被定义为NSSA区域,区域1接收的RIP路由传播到NSSAASBR后,由NSSAASBR产生Type7LSA在区域1内传播,当Type7LSA到达NSSAABR后,转换成Type5LSA传播到区域0和区域2.
另一方面,运行RIP的自治系统的RIP路由通过区域2的ASBR产生Type5LSA在OSPF自治系统中传播.
但由于区域1是NSSA区域,所以Type5LSA不会到达区域1.
图1-4NSSA区域1.
1.
5路由器类型OSPF路由器根据在AS中的不同位置,可以分为以下四类:1.
区域内路由器(InternalRouter)该类路由器的所有接口都属于同一个OSPF区域.
2.
区域边界路由器ABR该类路由器可以同时属于两个以上的区域,但其中一个必须是骨干区域.
ABR用来连接骨干区域和非骨干区域,它与骨干区域之间既可以是物理连接,也可以是逻辑上的连接.
3.
骨干路由器(BackboneRouter)该类路由器至少有一个接口属于骨干区域.
因此,所有的ABR和位于Area0的内部路由器都是骨干路由器.
4.
自治系统边界路由器ASBR与其他AS交换路由信息的路由器称为ASBR.
ASBR并不一定位于AS的边界,它有可能是区域内路由器,也有可能是ABR.
只要一台OSPF路由器引入了外部路由的信息,它就成为ASBR.
1-5图1-5OSPF路由器的类型1.
1.
6路由类型OSPF将路由分为四类,按照优先级从高到低的顺序依次为:区域内路由(IntraArea)区域间路由(InterArea)第一类外部路由(Type1External):这类路由的可信程度较高,并且和OSPF自身路由的开销具有可比性,所以到第一类外部路由的开销等于本路由器到相应的ASBR的开销与ASBR到该路由目的地址的开销之和.
第二类外部路由(Type2External):这类路由的可信度比较低,所以OSPF协议认为从ASBR到自治系统之外的开销远远大于在自治系统之内到达ASBR的开销.
所以计算路由开销时将主要考虑前者,即到第二类外部路由的开销等于ASBR到该路由目的地址的开销.
如果计算出开销值相等的两条路由,再考虑本路由器到相应的ASBR的开销.
区域内和区域间路由描述的是AS内部的网络结构,外部路由则描述了应该如何选择到AS以外目的地址的路由.
1.
1.
7OSPF路由的计算过程同一个区域内,OSPF路由的计算过程可简单描述如下:每台OSPF路由器根据自己周围的网络拓扑结构生成LSA,并通过更新报文将LSA发送给网络中的其它OSPF路由器.
每台OSPF路由器都会收集其它路由器通告的LSA,所有的LSA放在一起便组成了LSDB.
LSA是对路由器周围网络拓扑结构的描述,LSDB则是对整个自治系统的网络拓扑结构的描述.
OSPF路由器将LSDB转换成一张带权的有向图,这张图便是对整个网络拓扑结构的真实反映.
各个路由器得到的有向图是完全相同的.
每台路由器根据有向图,使用SPF算法计算出一棵以自己为根的最短路径树,这棵树给出了到自治系统中各节点的路由.
Area1Area2Area3Area4BackbonerouterASBRIS-ISRIPInternalrouterABRArea01-61.
1.
8OSPF的网络类型OSPF根据链路层协议类型将网络分为下列四种类型:广播(Broadcast)类型:当链路层协议是Ethernet、FDDI时,缺省情况下,OSPF认为网络类型是Broadcast.
在该类型的网络中,通常以组播形式(OSPF路由器的预留IP组播地址是224.
0.
0.
5;OSPFDR的预留IP组播地址是224.
0.
0.
6)发送Hello报文、LSU报文和LSAck报文;以单播形式发送DD报文和LSR报文.
NBMA(Non-BroadcastMulti-Access,非广播多路访问)类型:当链路层协议是帧中继、ATM或X.
25时,缺省情况下,OSPF认为网络类型是NBMA.
在该类型的网络中,以单播形式发送协议报文.
P2MP(Point-to-MultiPoint,点到多点)类型:没有一种链路层协议会被缺省的认为是P2MP类型.
P2MP必须是由其他的网络类型强制更改的,常用做法是将NBMA网络改为P2MP网络.
在该类型的网络中,缺省情况下,以组播形式(224.
0.
0.
5)发送协议报文.
可以根据用户需要,以单播形式发送协议报文.
P2P(Point-to-Point,点到点)类型:当链路层协议是PPP、HDLC时,缺省情况下,OSPF认为网络类型是P2P.
在该类型的网络中,以组播形式(224.
0.
0.
5)发送协议报文.
NBMA与P2MP网络之间的区别如下:NBMA网络是全连通的;P2MP网络并不需要一定是全连通的.
NBMA网络中需要选举DR与BDR;P2MP网络中没有DR与BDR.
NBMA网络采用单播发送报文,需要手工配置邻居;P2MP网络采用组播方式发送报文,通过配置也可以采用单播发送报文.
1.
1.
9DR/BDR1.
DR/BDR简介在广播网和NBMA网络中,任意两台路由器之间都要交换路由信息.
如果网络中有n台路由器,则需要建立n(n-1)/2个邻接关系.
这使得任何一台路由器的路由变化都会导致多次传递,浪费了带宽资源.
为解决这一问题,OSPF提出了DR的概念,所有路由器只将信息发送给DR,由DR将网络链路状态发送出去.
另外,OSPF提出了BDR的概念.
BDR是对DR的一个备份,在选举DR的同时也选举BDR,BDR也和本网段内的所有路由器建立邻接关系并交换路由信息.
当DR失效后,BDR会立即成为新的DR.
OSPF网络中,既不是DR也不是BDR的路由器为DROther.
DROther仅与DR和BDR建立邻接关系,DROther之间不交换任何路由信息.
这样就减少了广播网和NBMA网络上各路由器之间邻接关系的数量,同时减少网络流量,节约了带宽资源.
如图1-6所示,进行DR/BDR选举后,5台路由器之间只需要建立7个邻接关系就可以了.
1-7图1-6DR和BDR示意图在OSPF中,邻居(Neighbor)和邻接(Adjacency)是两个不同的概念.
路由器启动后,会通过接口向外发送Hello报文,收到Hello报文的路由器会检查报文中所定义的参数,如果双方一致就会形成邻居关系.
只有当双方成功交换DD报文,交换LSA并达到LSDB同步之后,才形成邻接关系.
2.
DR/BDR选举过程DR/BDR是由同一网段中所有的路由器根据路由器优先级和RouterID通过Hello报文选举出来的,只有优先级大于0的路由器才具有选举资格.
进行DR/BDR选举时每台路由器将自己选出的DR写入Hello报文中,发给网段上每台运行OSPF协议的路由器.
当处于同一网段的两台路由器同时宣布自己是DR时,路由器优先级高者胜出.
如果优先级相等,则RouterID大者胜出.
需要注意的是:只有在广播或NBMA网络中才会选举DR;在P2P或P2PM网络中不需要选举DR.
DR是某个网段中的概念,是针对路由器的接口而言的.
某台路由器在一个接口上可能是DR,在另一个接口上有可能是BDR,或者是DROther.
DR/BDR选举完毕后,即使网络中加入一台具有更高优先级的路由器,也不会重新进行选举,替换该网段中已经存在的DR/BDR成为新的DR/BDR.
DR并不一定就是路由器优先级最高的路由器接口;同理,BDR也并不一定就是路由器优先级次高的路由器接口.
1.
1.
10协议规范与OSPF相关的协议规范有:RFC1765:OSPFDatabaseOverflowRFC2328:OSPFVersion2RFC3101:OSPFNot-So-StubbyArea(NSSA)OptionRFC3137:OSPFStubRouterAdvertisementRFC3630:TrafficEngineeringExtensionstoOSPFVersion2RFC4811:OSPFOut-of-BandLSDBResynchronizationRFC4812:OSPFRestartSignalingRFC4813:OSPFLink-LocalSignaling1-81.
2OSPF配置任务简介无论是哪种类型的路由器,都必须先使能OSPF,否则OSPF协议将无法正常运行.
在进行各项配置的时候应该先做好网络规划,错误的配置可能会导致相邻路由器之间无法相互传递信息,甚至导致路由信息的阻塞或者产生路由环路.
表1-1OSPF配置任务简介配置任务说明详细配置使能OSPF功能必选1.
3配置OSPF区域配置Stub区域可选1.
4.
2配置NSSA区域可选1.
4.
3配置虚连接可选1.
4.
4配置OSPF的网络类型配置OSPF接口网络类型为广播可选1.
5.
2配置OSPF接口网络类型为NBMA可选1.
5.
3配置OSPF接口网络类型为P2MP可选1.
5.
4配置OSPF接口网络类型为P2P可选1.
5.
5配置OSPF的路由信息控制配置OSPF路由聚合可选1.
6.
2配置OSPF对通过接收到的LSA计算出来的路由信息进行过滤可选1.
6.
3配置对Type-3LSA进行过滤可选1.
6.
4配置OSPF接口的开销值可选1.
6.
5配置OSPF最大等价路由条数可选1.
6.
6配置OSPF协议的优先级可选1.
6.
7配置OSPF引入外部路由可选1.
6.
8配置发布一条主机路由可选1.
6.
9调整和优化OSPF网络配置OSPF报文定时器可选1.
7.
2配置接口传送LSA的延迟时间可选1.
7.
3配置SPF计算时间间隔可选1.
7.
4配置LSA重复到达的最小时间间隔可选1.
7.
5配置LSA重新生成的时间间隔可选1.
7.
6禁止接口收发OSPF报文可选1.
7.
7配置Stub路由器可选1.
7.
8配置OSPF验证可选1.
7.
9配置DD报文中的MTU可选1.
7.
10配置LSDB中ExternalLSA的最大数量可选1.
7.
11配置兼容RFC1583的外部路由选择规则可选1.
7.
12配置邻居状态变化的输出开关可选1.
7.
13配置OSPF网管功能可选1.
7.
14使能日志功能可选1.
7.
151-9配置任务说明详细配置使能OpaqueLSA发布接收能力可选1.
7.
16配置OSPF优先处理Hello报文功能可选1.
7.
17配置接口发送LSU报文的时间间隔和一次发送LSU报文的最大个数可选1.
7.
18配置OSPF报文的DSCP优先级可选1.
7.
19配置OSPFISPF可选1.
7.
20配置OSPF快速重路由可选1.
8配置OSPFGR配置GRRestarter可选1.
9.
1配置GRHelper可选1.
9.
2重启OSPFGR进程可选1.
9.
3配置OSPFNSR可选1.
10配置OSPF与BFD联动可选1.
111.
3使能OSPF功能在OSPF的各项配置任务中,必须先使能OSPF功能,其它功能特性的配置才能生效.
1.
3.
1配置准备在配置OSPF之前,需完成以下任务:配置链路层协议,保证链路层通信正常.
配置接口的网络层地址,使各相邻节点网络层可达.
1.
3.
2使能OSPF功能要在路由器上使能OSPF功能,必须先创建OSPF进程、指定该进程关联的区域以及区域包括的网段;对于当前路由器来说,如果某个路由器的接口IP地址落在某个区域的网段内,则该接口属于这个区域并使能了OSPF功能,OSPF将把这个接口的直连路由宣告出去.
RouterID用来在一个自治系统中唯一的标识一台路由器.
一台路由器如果要运行OSPF协议,则必须存在RouterID.
用户可以在创建OSPF进程的时候指定RouterID,配置时,必须保证自治系统中任意两台路由器的ID都不相同.
通常的做法是将路由器的ID配置为与该路由器某个接口的IP地址一致.
如果在创建OSPF进程的时候没有指定RouterID,则缺省使用全局RouterID.
建议用户在创建OSPF进程的时候指定RouterID.
目前,系统支持OSPF多进程和OSPF多实例:当在一台路由器上启动多个OSPF进程时,需要指定不同的进程号.
OSPF进程号是本地概念,不影响与其它路由器之间的报文交换.
因此,不同的路由器之间,即使进程号不同也可以进行报文交换.
可以指定OSPF进程所属的VPN.
如果未指定VPN,则表示OSPF位于公网中.
VPN的相关内容请参见"MPLS配置指导"中的"MPLSL3VPN".
1-10表1-2使能OSPF功能操作命令说明进入系统视图system-view-配置全局RouterIDrouteridrouter-id可选缺省情况下,未配置全局RouterID如果没有配置全局RouterID,则按照下面的规则进行选择:(1)如果存在配置IP地址的Loopback接口,则选择Loopback接口地址中最大的作为RouterID(2)如果没有配置IP地址的Loopback接口,则从其他接口的IP地址中选择最大的作为RouterID(不考虑接口的up/down状态)创建OSPF,进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*必选缺省情况下,系统不运行OSPF配置OSPF进程描述descriptiondescription可选缺省情况下,没有配置进程描述配置OSPF区域,进入OSPF区域视图areaarea-id必选缺省情况下,没有配置OSPF区域配置区域描述descriptiondescription可选缺省情况下,没有配置区域描述配置区域所包含的网段并在指定网段的接口上使能OSPFnetworkip-addresswildcard-mask必选缺省情况下,接口不属于任何区域且OSPF功能处于关闭状态一个网段只能属于一个区域.
建议用户为每个OSPF进程配置进程描述信息,帮助识别进程的用途,以便于记忆和管理.
建议用户为每个区域配置区域描述信息,帮助识别区域的用途,以便于记忆和管理.
1.
4配置OSPF区域网络管理员对整个网络划分区域完毕后,可以根据组网需要进一步将区域配置成Stub区域或NSSA区域.
当非骨干区域不能与骨干区域保持连通,或者骨干区域因为各方面条件的限制无法保持连通时,可以通过配置OSPF虚连接予以解决.
1.
4.
1配置准备在配置OSPF的区域特性之前,需完成以下任务:配置接口的网络层地址,使相邻节点网络层可达使能OSPF功能1-111.
4.
2配置Stub区域对于位于AS边缘的一些非骨干区域,我们可以在该区域的所有路由器上配置stub命令,把该区域配置为Stub区域.
这样,Type5LSA不会在Stub区域里泛洪,减小了路由表的规模.
ABR生成一条缺省路由,所有到达自治系统外部的报文都交给ABR进行转发.
如果想进一步减少Stub区域路由表规模以及路由信息传递的数量,那么在ABR上配置stub命令时指定no-summary参数,可以将该区域配置为TotallyStub区域.
这样,自治系统外部路由和区域间的路由信息都不会传递到本区域,所有目的地是自治系统外和区域外的报文都交给ABR进行转发.
表1-3配置Stub区域操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-进入OSPF区域视图areaarea-id-配置当前区域为Stub区域stub[default-route-advertise-always|no-summary]*必选缺省情况下,没有区域被设置为Stub区域配置ABR发送到Stub区域缺省路由的开销default-costcost可选缺省情况下,ABR发送到Stub区域缺省路由的开销为1配置时需要注意以下几点:骨干区域不能配置成Stub区域和TotallyStub区域.
如果要将一个区域配置成Stub区域,则该区域中的所有路由器必须都要配置stub命令.
如果要将一个区域配置成TotallyStub区域,该区域中的所有路由器必须配置stub命令,该区域的ABR路由器需要配置stubno-summary命令.
default-cost命令只有在Stub区域和TotallyStub区域的ABR上配置才能生效.
Stub区域和TotallyStub区域内不能存在ASBR,即自治系统外部的路由不能在本区域内传播.
虚连接不能穿过Stub区域和TotallyStub区域.
1.
4.
3配置NSSA区域Stub区域不能引入外部路由,为了在允许将自治系统外部路由通告到OSPF路由域内部的同时,保持其余部分的Stub区域的特征,网络管理员可以将区域配置为NSSA区域.
配置nssa命令时指定no-summary参数可以将该区域配置为TotallyNSSA区域,该区域的ABR不会将区域间的路由信息传递到本区域.
1-12表1-4配置NSSA区域操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-进入OSPF区域视图areaarea-id-配置当前区域为NSSA区域nssa[default-route-advertise|no-import-route|no-summary|translate-always|translator-stability-intervalvalue]*必选缺省情况下,没有区域被设置为NSSA区域配置发送到NSSA区域缺省路由的开销default-costcost可选缺省情况下,发送到NSSA区域的缺省路由的开销为1NSSA区域和TotallyNSSA区域内的所有路由器必须使用nssa命令将该区域配置成NSSA属性.
default-cost命令只有在NSSA区域和TotallyNSSA区域的ABR/ASBR上配置才能生效.
虚连接不能穿过NSSA区域和TotallyNSSA区域.
1.
4.
4配置虚连接在划分区域之后,非骨干区域之间的OSPF路由更新是通过骨干区域来完成交换的.
对此,OSPF要求所有非骨干区域必须与骨干区域保持连通,并且骨干区域自身也要保持连通.
但在实际应用中,可能会因为各方面条件的限制,无法满足这个要求.
这时可以通过在ABR上配置OSPF虚连接予以解决.
表1-5配置虚连接操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-进入OSPF区域视图areaarea-id-创建并配置虚连接vlink-peerrouter-id[helloseconds|retransmitseconds|trans-delayseconds|deadseconds|simple[plain|cipher]password|{md5|hmac-md5}key-id[plain|cipher]password]*必选为使虚连接生效,在虚连接的两端都需配置此命令,并且两端配置的hello、dead参数必须一致1-13虚连接不能穿过Stub区域和TotallyStub区域.
虚连接不能穿过NSSA区域和TotallyNSSA区域.
Release6708及以上版本支持MD5验证平滑迁移,具体步骤请参见1.
7.
9配置OSPF验证.
1.
5配置OSPF的网络类型OSPF的网络类型有四种:广播、NBMA、P2MP和P2P.
当接口封装的链路层协议不同时,OSPF接口网络类型的缺省情况也不同:广播:当接口封装的链路层协议是Ethernet、FDDI时,接口网络类型缺省值为广播;NBMA:当接口封装的链路层协议是ATM、帧中继或X.
25时,接口网络类型缺省值为NBMA;P2P:当接口封装的链路层协议是PPP、LAPB、HDLC时,接口网络类型缺省值为P2P.
用户可以根据需要更改接口的网络类型,例如:当NBMA网络通过配置地址映射成为全连通网络时(即网络中任意两台路由器之间都存在一条虚电路而直接可达),可以将网络类型更改为广播,不需要手工配置邻居,简化配置.
当广播网络中有部分路由器不支持组播时,那么可以将网络类型更改为NBMA.
NBMA网络要求必须是全连通的,即网络中任意两台路由器之间都必须有一条虚电路直接可达;如果NBMA网络不是全连通而是部分连通时,可以将网络类型更改为P2MP,达到简化配置、节省网络开销的目的.
如果路由器在NBMA网络中只有一个对端,也可将接口类型配置为P2P,节省网络开销.
如果接口配置为广播、NBMA或者P2MP网络类型,只有双方接口在同一网段才能建立邻居关系.
1.
5.
1配置准备在配置OSPF的网络类型之前,需完成以下任务:配置接口的网络层地址,使相邻节点之间网络层可达使能OSPF功能1.
5.
2配置OSPF接口网络类型为广播表1-6配置OSPF接口网络类型为广播操作命令说明进入系统视图system-view-进入接口视图interfaceinterface-typeinterface-number-配置OSPF接口网络类型为广播ospfnetwork-typebroadcast必选缺省情况下,接口的网络类型根据接口封装的链路层协议而定配置OSPF接口的路由器优先级ospfdr-prioritypriority可选缺省情况下,接口的路由器优先级为11-141.
5.
3配置OSPF接口网络类型为NBMA把接口类型配置为NBMA后,需要进行一些特殊的配置.
由于无法通过广播Hello报文的形式动态发现相邻路由器,必须手工为接口指定相邻接口的IP地址、该相邻接口是否有选举权等(dr-priority参数的值仅表示路由器是否具有DR选举权,为0表示不具有DR选举权,大于0时表示具有DR选举权).
表1-7配置OSPF接口网络类型为NBMA操作命令说明进入系统视图system-view-进入接口视图interfaceinterface-typeinterface-number-配置OSPF接口的网络类型为NBMAospfnetwork-typenbma必选缺省情况下,接口的网络类型根据物理接口而定配置OSPF接口的路由器优先级ospfdr-prioritypriority可选缺省情况下,接口的路由器优先级为1退回系统视图quit-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置NBMA网络的邻居peerip-address[costvalue|dr-prioritydr-priority]必选使用peer命令和使用ospfdr-priority命令设置的优先级具有不同的用途:peer命令设置的优先级用于表示邻居是否具有选举权.
如果在配置邻居时将优先级指定为0,则本地路由器认为该邻居不具备选举权,不向该邻居发送Hello报文,这种配置可以减少在DR和BDR选举过程中网络上的Hello报文数量.
但如果本地路由器是DR或BDR,它也会向优先级为0的邻居发送Hello报文,以建立邻居关系.
ospfdr-priority命令设置的优先级用于实际的DR选举.
1.
5.
4配置OSPF接口网络类型为P2MP表1-8配置OSPF接口网络类型为P2MP操作命令说明进入系统视图system-view-进入接口视图interfaceinterface-typeinterface-number-1-15操作命令说明配置OSPF接口的网络类型为P2MPospfnetwork-typep2mp[unicast]必选缺省情况下,接口的网络类型根据物理接口而定当把接口类型配置为P2MP单播后,OSPF协议在该接口上发送的报文均为单播报文.
由于无法通过广播Hello报文的形式动态发现相邻路由器,必须手工为接口指定相邻接口的IP地址退回系统视图quit-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置P2MP单播网络的邻居peerip-address[costvalue|dr-prioritydr-priority]如果接口类型为P2MP单播,必选1.
5.
5配置OSPF接口网络类型为P2P表1-9配置OSPF接口网络类型为P2P操作命令说明进入系统视图system-view-进入接口视图interfaceinterface-typeinterface-number-配置OSPF接口的网络类型为P2Pospfnetwork-typep2p必选缺省情况下,接口的网络类型根据物理接口而定1.
6配置OSPF的路由信息控制通过本节的配置,可以控制OSPF的路由信息的发布与接收,并引入其他协议的路由.
1.
6.
1配置准备在配置OSPF路由信息控制之前,需完成以下任务:配置接口的网络层地址,使相邻节点之间网络层可达使能OSPF功能如果对路由信息进行过滤,则需要配置对应的过滤列表1.
6.
2配置OSPF路由聚合路由聚合是指ABR或ASBR将具有相同前缀的路由信息聚合,只发布一条路由到其它区域.
通过路由聚合可以减少路由信息,从而减小路由表的规模,提高路由器的性能.
路由聚合有下面两种:ABR路由聚合和ASBR路由聚合.
1.
配置ABR路由聚合如果区域里存在一些连续的网段,则可以在ABR上配置路由聚合,将这些连续的网段聚合成一个网段,ABR向其它区域发送路由信息时,以网段为单位生成Type3LSA.
这样ABR只发送一条聚1-16合后的LSA,所有属于聚合网段范围的LSA将不再会被单独发送出去,既可以减少其它区域中LSDB的规模,也减小了因为网络拓扑变化带来的影响.
例如,某个区域内有三条区域内路由19.
1.
1.
0/24,19.
1.
2.
0/24,19.
1.
3.
0/24,如果在ABR上配置了路由聚合,将三条路由聚合成一条19.
1.
0.
0/16,则ABR就只生成一条聚合后的LSA,并发布给其它区域的路由器.
表1-10配置ABR路由聚合操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-进入OSPF区域视图areaarea-id-配置OSPF的ABR路由聚合abr-summaryip-address{mask|mask-length}[advertise|not-advertise][costcost]必选此命令只有在ABR上配置才会有效缺省情况下,ABR不会对路由进行聚合2.
配置ASBR路由聚合ASBR引入外部路由后,每一条路由都会放在单独的一条ASELSA中向外宣告;通过配置路由聚合,路由器只把聚合后的路由放在ASELSA中向外宣告,减少了LSDB中LSA的数量.
在ASBR上配置路由聚合后,将对聚合地址范围内的Type5LSA进行聚合.
如果ASBR在NSSA区域里面,将对聚合地址范围内的Type7LSA进行聚合,当本地路由器同时是ASBR和ABR时,将对由Type7LSA转化成的Type5LSA进行聚合处理.
表1-11配置ASBR路由聚合操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置OSPF的ASBR路由聚合asbr-summaryip-address{mask|mask-length}[tagtag|not-advertise|costcost]*必选此命令只有在ASBR上配置才会有效缺省情况下,ASBR不会对引入的路由进行聚合1.
6.
3配置OSPF对通过接收到的LSA计算出来的路由信息进行过滤关于地址前缀列表的详细介绍,请参见"三层技术-IP路由配置指导"中的"路由策略".
关于路由策略的详细介绍,请参见"三层技术-IP路由配置指导"中的"路由策略".
OSPF是基于链路状态的动态路由协议,路由信息是根据接收到的LSA计算出来的,可以对通过接收到的LSA计算出来的OSPF路由信息进行过滤.
1-17一共有四种过滤方式:基于要加入到路由表的路由信息的目的地址进行过滤,可以通过配置访问控制列表或IP地址前缀列表来指定过滤条件;基于要加入到路由表的路由信息的下一跳进行过滤,可以通过在命令中配置gateway参数来指定过滤条件;基于要加入到路由表的路由信息的目的地址和下一跳进行过滤,可以通过配置访问控制列表或IP地址前缀列表指定过滤目的地址的条件,同时配置gateway参数来指定过滤下一跳的条件;基于路由策略对要加入到路由表的路由信息进行过滤,可以通过在命令中配置route-policy参数来指定过滤条件.
表1-12配置OSPF对通过接收到的LSA计算出来的路由信息进行过滤操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置对接收的路由进行过滤filter-policy{acl-number[gatewayip-prefix-name]|gatewayip-prefix-name|ip-prefixip-prefix-name[gatewayip-prefix-name]|route-policyroute-policy-name}import必选缺省情况下,不对接收到的路由信息进行过滤1.
6.
4配置过滤Type-3LSA通过在ABR上配置Type-3LSA过滤,可以对进入ABR所在区域或ABR向其它区域发布的Type-3LSA进行过滤.
表1-13配置过滤Type-3LSA操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-进入OSPF区域视图areaarea-id-配置对Type-3LSA进行过滤filter{acl-number|ip-prefixip-prefix-name}{import|export}必选缺省情况下,没有对Type-3LSA进行过滤1.
6.
5配置OSPF接口的开销值OSPF有两种方式来配置接口的开销值:在接口视图下直接配置开销值;配置接口的带宽参考值,OSPF根据带宽参考值自动计算接口的开销值,计算公式为:接口开销=带宽参考值(100Mbps)÷接口带宽(Mbps).
当计算出来的开销值大于65535时,开销取最大值65535;当计算出来的开销值小于1时,开销取最小值1.
1-18如果没有在接口下配置接口的开销值,OSPF会根据该接口的带宽自动计算其开销值.
1.
配置接口的开销值表1-14配置OSPF接口的开销值操作命令说明进入系统视图system-view-进入接口视图interfaceinterface-typeinterface-number-设置OSPF接口的开销值ospfcostvalue可选缺省情况下,VLAN接口的缺省值为1;Loopback接口的缺省值为0;其他接口按照当前的带宽自动计算接口运行OSPF协议所需的开销2.
配置带宽参考值表1-15配置带宽参考值操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置带宽参考值bandwidth-referencevalue可选缺省情况下,带宽参考值为100Mbps1.
6.
6配置OSPF最大等价路由条数配置最大等价路由条数,可以使用多条等价路由实现负载分担,提高链路利用率.
表1-16配置OSPF最大等价路由条数操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置OSPF最大等价路由条数maximumload-balancingmaximum可选缺省情况下,OSPF支持的等价路由的最大条数为161.
6.
7配置OSPF协议的优先级由于路由器上可能同时运行多个动态路由协议,就存在各个路由协议之间路由信息共享和选择的问题.
系统为每一种路由协议设置一个优先级,在不同协议发现同一条路由时,优先级高的路由将被优先选择.
1-19表1-17配置OSPF协议的优先级操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置OSPF协议的路由优先级preference[ase][route-policyroute-policy-name]value可选缺省情况下,OSPF内部路由的优先级为10,OSPF外部路由的优先级为1501.
6.
8配置OSPF引入外部路由1.
配置OSPF引入其它协议的路由如果在路由器上不仅运行OSPF,还运行着其它路由协议,可以配置OSPF引入其它协议生成的路由,如RIP、IS-IS、BGP、静态路由或者直连路由,将这些路由信息通过Type5LSA或Type7LSA向外宣告.
OSPF还可以对引入的路由进行过滤,只将满足过滤条件的外部路由转换为Type5LSA或Type7LSA发布出去.
表1-18配置OSPF引入其它协议的路由操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置OSPF引入其它协议的路由import-routeprotocol[process-id|all-processes|allow-ibgp][costcost|typetype|tagtag|route-policyroute-policy-name]*必选缺省情况下,没有引入其他协议的路由信息配置对引入的路由进行过滤filter-policy{acl-number|ip-prefixip-prefix-name}export[protocol[process-id]]可选缺省情况下,没有对引入的路由信息进行过滤只能引入路由表中状态为active的路由,是否为active状态可以通过displayiprouting-tableprotocol命令来查看.
2.
配置OSPF引入缺省路由OSPF不能通过import-route命令从其它协议引入缺省路由,如果想把缺省路由引入到OSPF路由区域,必须要使用下面命令配置OSPF引入缺省路由.
表1-19配置OSPF引入缺省路由操作命令说明进入系统视图system-view-1-20操作命令说明进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置OSPF引入缺省路由default-route-advertise[[[always|permit-calculate-other]|costcost|route-policyroute-policy-name|typetype]*|summarycostcost]必选缺省情况下,没有引入缺省路由default-route-advertisesummarycost命令仅在VPN中应用,以Type-3LSA引入缺省路由,PE路由器会将引入的缺省路由发布给CE路由器.
3.
配置引入路由的相关参数当OSPF引入外部路由时,还可以配置一些开销、路由上限、标记和类型等参数的缺省值.
路由标记可以用来标识协议相关的信息,如OSPF从BGP引入路由时,可以用来标记自治系统的编号.
表1-20配置引入路由时的相关参数操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置引入外部路由时的参数缺省值(开销、路由上限、标记、类型)default{costcost|limitlimit|tagtag|typetype}*可选缺省情况下,OSPF引入外部路由的缺省值如下:路由度量值为1单位时间内引入外部路由的上限为1000外部路由标记值为1引入的外部路由类型为Type21.
6.
9配置发布一条主机路由表1-21配置发布一条主机路由操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-进入OSPF区域视图areaarea-id-配置并发布一条主机路由host-advertiseip-addresscost必选缺省情况下,OSPF不发布所包含网段之外的主机路由1-211.
7调整和优化OSPF网络用户可以从以下几个方面来调整和优化OSPF网络:通过改变OSPF的报文定时器,可以调整OSPF网络的收敛速度以及协议报文带来的网络负荷.
在一些低速链路上,需要考虑接口传送LSA的延迟时间.
通过调整SPF计算间隔时间,可以抑制由于网络频繁变化带来的资源消耗问题.
在安全性要求较高的网络中,可以通过配置OSPF验证特性,来提高OSPF网络的安全性.
OSPF同时支持网管功能,可以配置OSPFMIB与某一进程绑定,以及发送Trap消息和日志功能.
1.
7.
1配置准备在调整和优化OSPF网络之前,需完成以下任务:配置接口的网络层地址,使相邻节点之间网络层可达使能OSPF功能1.
7.
2配置OSPF报文定时器用户可以在接口上配置下列OSPF报文定时器:Hello定时器:接口向邻居发送Hello报文的时间间隔,OSPF邻居之间的Hello定时器的值要保持一致.
Poll定时器:在NBMA网络中,路由器向状态为down的邻居路由器发送轮询Hello报文的时间间隔.
邻居失效时间:在邻居失效时间内,如果接口还没有收到邻居发送的Hello报文,路由器就会宣告该邻居无效.
接口重传LSA的时间间隔:路由器向它的邻居通告一条LSA后,需要对方进行确认.
若在重传间隔时间内没有收到对方的确认报文,就会向邻居重传这条LSA.
表1-22配置OSPF报文定时器操作命令说明进入系统视图system-view-进入接口视图interfaceinterface-typeinterface-number-配置Hello定时器ospftimerhelloseconds可选缺省情况下,P2P、Broadcast类型接口发送Hello报文的时间间隔为10秒,P2MP、NBMA类型接口发送Hello报文的时间间隔为30秒配置Poll定时器ospftimerpollseconds可选缺省情况下,发送轮询Hello报文的时间间隔为120秒配置邻居失效时间ospftimerdeadseconds可选缺省情况下,P2P、Broadcast类型接口的OSPF邻居失效时间为40秒,P2MP、NBMA类型接口的OSPF邻居失效时间为120秒1-22操作命令说明配置接口重传LSA的时间间隔ospftimerretransmitinterval可选缺省情况下,接口重传LSA的时间间隔为5秒修改了网络类型后,Hello定时器与邻居失效时间都将恢复缺省值.
在同一接口上邻居失效时间应至少为Hello时间间隔的4倍.
轮询Hello报文的时间间隔至少应为Hello时间间隔的4倍.
相邻路由器重传LSA时间间隔的值不要设置得太小,否则将会引起不必要的重传.
通常应该大于一个报文在两台路由器之间传送一个来回的时间.
1.
7.
3配置接口传送LSA的延迟时间考虑到OSPF报文在链路上传送时也需要花费时间,所以LSA的老化时间(age)在传送之前要增加一定的延迟时间,在低速链路上需要对该项配置进行重点考虑.
表1-23配置接口传送LSA的延迟时间操作命令说明进入系统视图system-view-进入接口视图interfaceinterface-typeinterface-number-配置接口传送LSA的延迟时间ospftrans-delayseconds可选缺省情况下,接口传送LSA的延迟时间为1秒1.
7.
4配置SPF计算时间间隔当OSPF的LSDB发生改变时,需要重新计算最短路径.
如果网络频繁变化,且每次变化都立即计算最短路径,将会占用大量系统资源,并影响路由器的效率.
通过调节SPF计算时间间隔,可以抑制由于网络频繁变化带来的影响.
表1-24配置SPF计算时间间隔操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置SPF计算时间间隔spf-schedule-intervalmaximum-interval[minimum-interval[incremental-interval]]可选缺省情况下,SPF计算的时间间隔为5秒1-23本命令在网络变化不频繁的情况下将连续路由计算的时间间隔缩小到minimum-interval,而在网络变化频繁的情况下可以进行相应惩罚,增加incremental-interval*2n-2(n为连续触发路由计算的次数),将等待时间按照配置的惩罚增量延长,最大不超过maximum-interval.
1.
7.
5配置LSA重复到达的最小时间间隔如果在重复到达的最小时间间隔内连续收到一条LSA类型、LSID、生成路由器ID均相同的LSA则直接丢弃,这样就可以抑制网络频繁变化可能导致的占用过多带宽资源和路由器资源.
表1-25配置LSA的重复接收最小间隔操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置LSA重复到达的最小时间间隔lsa-arrival-intervalinterval可选缺省情况下,LSA重复到达的最小时间间隔为1000毫秒建议lsa-arrival-interval命令配置的interval小于或等于lsa-generation-interval命令所配置的minimum-interval.
1.
7.
6配置LSA重新生成的时间间隔通过调节LSA重新生成的时间间隔,可以抑制网络频繁变化可能导致的占用过多带宽资源和路由器资源.
表1-26配置LSA发送间隔操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置LSA重新生成的时间间隔lsa-generation-intervalmaximum-interval[initial-interval[incremental-interval]]可选缺省情况下,最大时间间隔为5秒,最小时间间隔为0毫秒,惩罚增量为5000毫秒1-24本命令在网络变化不频繁的情况下将LSA重新生成时间间隔缩小到minimum-interval,而在网络变化频繁的情况下可以进行相应惩罚,增加incremental-interval*2n-2(n为连续触发路由计算的次数),将等待时间按照配置的惩罚增量延长,最大不超过maximum-interval.
1.
7.
7禁止接口收发OSPF报文如果要使OSPF路由信息不被某一网络中的路由器获得,可以禁止接口收发OSPF报文.
表1-27禁止接口收发OSPF报文操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-禁止接口收发OSPF报文silent-interface{interface-typeinterface-number|all}可选缺省情况下,允许接口收发OSPF报文不同的进程可以对同一接口禁止收发OSPF报文,但silent-interface命令只对本进程已经使能的OSPF接口起作用,对其它进程的接口不起作用.
将运行OSPF协议的接口指定为Silent状态后,该接口的直连路由仍可以由同一路由器的其它接口通过Router-LSA发布出去,但OSPF报文将被阻塞,接口上无法建立邻居关系.
这样可以增强OSPF的组网适应能力,减少系统资源的消耗.
1.
7.
8配置Stub路由器Stub路由器用来控制流量,它告知其他OSPF路由器不要使用这个Stub路由器来转发数据,但可以拥有一个到Stub路由器的路由.
通过将当前路由器配置为Stub路由器,在该路由器发布的Router-LSA中,当链路类型取值为3表示连接到Stub网络时,链路度量值不变;当链路类型为1、2、4分别表示通过点对点链路与另一路由器相连、连接到传送网络、虚连接时,链路度量值将设置为最大值65535.
这样其邻居计算出这条路由的开销就会很大,如果邻居上有到这个目的地址开销更小的路由,则数据不会通过这个Stub路由器转发.
表1-28配置Stub路由器操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置Stub路由器stub-router必选缺省情况下,没有路由器被配置为Stub路由器1-25Stub路由器与Stub区域无关.
1.
7.
9配置OSPF验证从安全性角度来考虑,为了避免路由信息外泄或者对OSPF路由器进行恶意攻击,OSPF提供报文验证功能.
OSPF路由器建立邻居关系时,在发送的报文中会携带配置好的口令,接收报文时进行密码验证,只有通过验证的报文才能接收,否则将不会接收报文,不能正常建立邻居.
1.
Release6708以前版本适用要配置OSPF报文验证,同一个区域的所有路由器上都需要配置区域验证模式,且配置的验证模式必须相同,同一个网段内的路由器需要配置相同的接口验证模式和口令.
表1-29配置OSPF验证操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-进入OSPF区域视图areaarea-id-配置OSPF区域的验证模式authentication-mode{md5|simple}必选缺省情况下,没有配置区域验证模式退回OSPF视图quit-退回系统视图quit-进入接口视图interfaceinterface-typeinterface-number-配置OSPF接口的验证模式(简单验证)ospfauthentication-modesimple[cipher|plain]password二者必选其一缺省情况下,接口不对OSPF报文进行验证配置OSPF接口的验证模式(MD5验证)ospfauthentication-mode{hmac-md5|md5}key-id[cipher|plain]password2.
Release6708及以上版本适用要配置OSPF报文验证,同一个网段内的路由器需要配置相同的验证模式和口令.
OSPF验证包括OSPF区域验证和OSPF接口验证,其中OSPF接口验证优先于OSPF区域验证,当二者同时配置时,接口的验证配置会生效.
配置OSPF区域验证表1-30配置OSPF区域验证操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-1-26操作命令说明进入OSPF区域视图areaarea-id-配置OSPF区域的验证模式(简单验证)authentication-modesimple[cipher|plain]password二者必选其一缺省情况下,区域使能的接口不对OSPF报文进行验证配置OSPF区域的验证模式(MD5验证)authentication-mode{hmac-md5|md5}key-id[cipher|plain]password在进行OSPF区域验证时,如果需要修改MD5/HMAC-MD5验证字,但又不能引起OSPF邻居中断,可以通过下面的方式进行平滑迁移配置:(1)首先在该区域配置新的MD5/HMAC-MD5验证字;此时若邻居设备尚未配置新的MD5/HMAC-MD5验证字,便会触发MD5验证平滑迁移过程.
在这个过程中,OSPF会发送分别携带各个MD5/HMAC-MD5验证字的多份报文,使得已配置新验证字的邻居设备和尚未配置新验证字的邻居设备都能验证通过,保持邻居关系;(2)然后在各个邻居设备上也都配置相同的新MD5/HMAC-MD5验证字;当本设备上收到所有邻居的携带新验证字的报文后,便会退出MD5验证平滑迁移过程;(3)最后在本设备和所有邻居上都删除旧的MD5/HMAC-MD5验证字.
建议区域下不要保留多个MD5/HMAC-MD5验证字,每次MD5/HMAC-MD5验证字修改完毕后,应当及时删除旧的验证字,这样可以防止与持有旧验证字的系统继续通信、减少被攻击的可能,还可以减少验证迁移过程对系统、带宽的消耗.
配置OSPF接口验证表1-31配置OSPF接口验证操作命令说明进入系统视图system-view-进入接口视图interfaceinterface-typeinterface-number-配置OSPF接口的验证模式(简单验证)ospfauthentication-modesimple[cipher|plain]password二者必选其一缺省情况下,接口不对OSPF报文进行验证配置OSPF接口的验证模式(MD5验证)ospfauthentication-mode{hmac-md5|md5}key-id[cipher|plain]password在进行OSPF接口验证时,如果需要修改MD5/HMAC-MD5验证字,但又不能引起OSPF邻居中断,可以通过下面的方式进行平滑迁移配置:(1)首先在该接口配置新的MD5/HMAC-MD5验证字;此时若邻居设备尚未配置新的MD5/HMAC-MD5验证字,便会触发MD5验证平滑迁移过程.
在这个过程中,OSPF会发送分别携带各个MD5/HMAC-MD5验证字的多份报文,使得已配置新验证字的邻居设备和尚未配置新验证字的邻居设备都能验证通过,保持邻居关系;(2)然后在各个邻居设备上也都配置相同的新MD5/HMAC-MD5验证字;当设备上收到所有邻居的携带新验证字的报文后,便会退出MD5验证平滑迁移过程;(3)最后在本设备和所有邻居上都删除旧的MD5/HMAC-MD5验证字.
建议接口下不要保留多个MD5/HMAC-MD5验证字,每次MD5/HMAC-MD5验证字修改完毕后,应当及时删除旧的验证字,这样可以防止与持有旧验证字的系统继续通信、减少被攻击的可能,还可以减少验证迁移过程对系统、带宽的消耗.
1-271.
7.
10配置DD报文中的MTU一般情况下,接口发送DD报文时不使用接口的实际MTU值,而是用0代替.
进行此配置后,将使用接口的实际MTU值填写DD报文InterfaceMTU字段.
表1-32配置DD报文中的MTU操作命令说明进入系统视图system-view-进入接口视图interfaceinterface-typeinterface-number-配置DD报文中MTU域的值为发送该报文接口的MTU值ospfmtu-enable可选缺省情况下,接口发送的DD报文中MTU域的值为01.
7.
11配置LSDB中ExternalLSA的最大数量表1-33配置LSDB中ExternalLSA的最大数量操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置LSDB中ExternalLSA的最大数量lsdb-overflow-limitnumber可选缺省情况下,不对LSDB中ExternalLSA的最大条目数进行限制1.
7.
12配置兼容RFC1583的外部路由选择规则当通过多条LSA计算出同一条外部路由时,在RFC2328中定义的选路规则与RFC1583的有所不同,进行此配置可以兼容RFC1583中定义的方式.
当RFC2328兼容RFC1583时,优选骨干区的区域内路由;当RFC2328不兼容RFC1583时,优选非骨干区的区域内路由,这样做的目的是尽量减少骨干区的负担.
表1-34配置兼容RFC1583的外部路由选择规则操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-使能兼容RFC1583的外部路由选择规则rfc1583compatible可选缺省情况下,使能兼容RFC1583的外部路由选择规则1-28为了避免路由环路,对于是否兼容RFC1583的外部路由选择规则,同一路由域内的路由器建议配置相同,即要么配置所有路由器都兼容RFC1583的外部路由选择规则,要么配置所有路由器都不兼容RFC1583的外部路由选择规则.
1.
7.
13配置邻居状态变化的输出开关打开邻居状态变化的输出开关后,邻居状态变化的日志信息会输出到配置终端上.
表1-35配置邻居状态变化的输出开关操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-打开邻居状态变化的输出开关log-peer-change可选缺省情况下,邻居状态变化的输出开关处于打开状态1.
7.
14配置OSPF网管功能开启OSPF模块的Trap功能后,该模块会生成Trap报文,用于报告该模块的重要事件.
Trap报文的级别如下:错误级别Trap报文,级别为level3;警告级别Trap报文,级别为level4;正常出现但是重要信息级别Trap报文,级别为level5;通知信息级别Trap报文,级别为level6.
生成的Trap报文将被发送到设备的信息中心,通过设置信息中心的参数,最终决定Trap报文的输出规则(即是否允许输出以及输出方向).
(有关信息中心参数的配置请参见"网络管理和监控配置指导"中的"信息中心".
)表1-36配置OSPF网管功能操作命令说明进入系统视图system-view-配置OSPFMIB绑定ospfmib-bindingprocess-id可选缺省情况下,MIB绑定在进程号最小的OSPF进程上使能OSPF的TRAP功能snmp-agenttrapenableospf[process-id][ifauthfail|ifcfgerror|ifrxbadpkt|ifstatechange|iftxretransmit|lsdbapproachoverflow|lsdboverflow|maxagelsa|nbrstatechange|originatelsa|vifcfgerror|virifauthfail|virifrxbadpkt|virifstatechange|viriftxretransmit|virnbrstatechange]*可选缺省情况下,OSPF的TRAP功能处于使能状态1-291.
7.
15使能日志功能表1-37使能日志功能操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-使能日志功能enablelog[config|error|state]必选缺省情况下,日志功能处于关闭状态1.
7.
16使能OpaqueLSA发布接收能力通过使能OpaqueLSA发布接收能力,OSPF可以接收和发布Type9、Type10和Type11的OpaqueLSA.
表1-38使能OpaqueLSA发布接收能力操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-使能OpaqueLSA发布接收能力opaque-capabilityenable可选缺省情况下,OpaqueLSA发布接收能力处于关闭状态1.
7.
17配置OSPF优先接收并处理Hello报文为了保证协议的正常运行,路由器要同时接收和处理Hello报文和其它类型的协议报文,当路由器与多个邻居路由器同时建立邻居关系并且路由表中的路由条数比较多时,需要路由器接收和处理的报文数量会很大,可以通过配置OSPF优先接收和处理Hello报文,来确保邻居关系的稳定性.
表1-39配置OSPF优先接收和处理Hello报文操作命令说明进入系统视图system-view-配置OSPF优先接收和处理Hello报文ospfpacket-processprioritized-treatment必选缺省情况下,OSPF不优先接收和处理Hello报文1.
7.
18配置接口发送LSU报文的时间间隔和一次发送LSU报文的最大个数如果路由器路由表里的路由条目很多,在与邻居进行LSDB同步时,可能需要发送大量LSU,有可能会对当前设备和网络带宽带来影响;因此,路由器将LSU报文分为多个批次进行发送,并且对OSPF接口每次允许发送的LSU报文的最大个数做出限制.
用户可根据需要配置OSPF接口发送LSU报文的时间间隔以及接口一次发送LSU报文的最大个数.
1-30表1-40配置接口发送LSU报文的时间间隔和一次发送LSU报文的最大个数操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置接口发送LSU报文的时间间隔和一次发送LSU报文的最大个数transmit-pacingintervalintervalcountcount可选缺省情况下,OSPF接口发送LSU报文的时间间隔为20毫秒,一次最多发送3个LSU报文1.
7.
19配置OSPF报文的DSCP优先级在IPv4报文头中,包含一个8bit的ToS字段,用于标识IP报文的服务类型.
RFC2474对这8个bit进行了定义,将前6个bit定义为DSCP优先级,最后2个bit作为保留位.
在报文传输的过程中,DSCP优先级可以被网络设备识别,并作为报文传输优先程度的参考.
用户可以对OSPF报文的DSCP优先级进行配置.
表1-41配置OSPF报文的DSCP优先级操作命令说明进入系统视图system-view-创建OSPF,进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*必选缺省情况下,系统不运行OSPF配置OSPF报文的DSCP优先级dscpdscp-value可选缺省情况下,OSPF报文的DSCP优先级为48Release6703及以上版本支持此特性.
1.
7.
20配置OSPFISPFISPF(IncrementalShortestPathFirst,增量最短路径优先)计算是对OSPF中最短路径树的增量计算,当网络的拓扑结构发生变化,即影响到最短路径树的结构时,只对受影响的部分节点进行重新计算拓扑结构,对最短路径树中受影响的部分进行修正,而不需要重建整棵最短路径树.
表1-42配置OSPFISPF操作命令说明进入系统视图system-view-进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instanceinstance-name]*-使能OSPFISPF功能,即增量SPF计算功能ispfenable可选缺省情况下,OSPFISPF功能处于关闭状态1-311.
8配置OSPF快速重路由OSPF支持快速重路由功能不能与OSPF支持BFD监测同时使用,否则可能导致快速重路由功能失效.
OSPF支持快速重路由功能(自动计算备份下一跳)不能与vlink-peer、sham-link(MPLS命令参考/MPLSL3VPN)、enabletraffic-adjustment(MPLS命令参考/MPLSTE)、enabletraffic-adjustmentadvertise(MPLS命令参考/MPLSTE)命令同时使用.
1.
简介当OSPF网络中的链路或某台路由器发生故障时,需要通过故障链路或故障路由器传输才能到达目的地的报文将会丢失或产生路由环路,数据流量将会被中断,直到OSPF根据新的拓扑网络路由收敛完毕后,被中断的流量才能恢复正常的传输.
为了尽可能缩短网络故障导致的流量中断时间,网络管理员可以根据需要配置OSPF快速重路由功能.
图1-7OSPF快速重路由功能示意图如图1-7所示,通过在RouterB上使能快速重路由功能,OSPF将为路由计算或指定备份下一跳,当RouterB探测到网络故障时,OSPF会使用事先获取的备份下一跳替换失效下一跳,通过备份下一跳来指导报文的转发,从而大大缩短了流量中断时间.
在使用备份下一跳指导报文转发的同时,OSPF会根据变化后的网络拓扑重新计算最短路径,网络收敛完毕后,使用新计算出来的最优路由来指导报文转发.
网络管理员可以配置给所有OSPF路由自动计算备份下一跳,也可以在路由策略中指定备份下一跳,为符合过滤条件的路由指定备份下一跳.
2.
配置准备在配置OSPF快速重路由特性之前,需完成以下任务:配置接口的网络层地址,使相邻节点网络层可达使能OSPF功能3.
配置OSPF支持快速重路由功能(自动计算备份下一跳)表1-43配置OSPF支持快速重路由功能(自动计算备份下一跳)操作命令说明进入系统视图system-view-1-32操作命令说明配置BFDEcho报文源地址bfdecho-source-ipip-address必选缺省情况下,没有配置BFDEcho报文源地址进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置OSPF支持快速重路由功能(自动计算备份下一跳)fast-rerouteauto[abr-only]必选缺省情况下,没有配置OSPF快速重路由功能abr-only表示仅选取到ABR设备的路由作为备份下一跳4.
配置OSPF支持快速重路由功能(通过路由策略指定备份下一跳)网络管理员可以通过applyfast-reroutebackup-interface命令在路由策略中指定备份下一跳,为符合过滤条件的路由指定备份下一跳,关于applyfast-reroutebackup-interface命令以及路由策略的相关配置,请参见"三层技术-IP路由配置指导"中的"路由策略".
表1-44配置OSPF支持快速重路由功能(通过路由策略指定备份下一跳)操作命令说明进入系统视图system-view-配置BFDEcho报文源地址bfdecho-source-ipip-address必选缺省情况下,没有配置BFDEcho报文源地址进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-配置OSPF支持快速重路由功能(通过路由策略指定备份下一跳)fast-rerouteroute-policyroute-policy-name必选缺省情况下,没有配置OSPF快速重路由功能1.
9配置OSPFGR设备充当GRRestarter后不能再配置OSPFNSR功能.
GR(GracefulRestart,平滑重启)是一种通过备份OSPF配置信息,在协议重启或主备倒换时OSPF进行平滑重启,从邻居那里获得邻居关系,并对LSDB进行同步,从而保证转发业务不中断的机制.
GR有两个角色:GRRestarter:发生协议重启或主备倒换事件且具有GR能力的设备.
GRHelper:和GRRestarter具有邻居关系,协助完成GR流程的设备.
目前有两种方式实现OSPFGR技术:一种是基于IETF标准,GRRestarter通过向GRHelper发送一种称为GraceLSA的9类OpaqueLSA来控制GR的交互过程.
1-33另外一种是非IETF标准,GRRestarter与GRHelper之间是通过相互发送携带LLS与OOB扩展信息的OSPF报文来完成GR的交互过程.
一台设备可以同时充当GRRestarter和GRHelper.
1.
9.
1配置GRRestarter可以在GRRestarter上配置基于OSPF的IETF标准或非IETF标准的GR能力.
在作为GRRestarter的设备上进行如下配置:1.
配置IETF标准GRRestarter表1-45配置IETF标准GRRestarter操作命令说明进入系统视图system-view-启动OSPF,进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-使能OpaqueLSA发布接收能力opaque-capabilityenable必选缺省情况下,OpaqueLSA发布接收能力处于关闭状态使能OSPF协议的IETF标准GR能力graceful-restartietf必选缺省情况下,OSPF协议的IETF标准GR能力处于关闭状态配置OSPF协议的GR重启间隔时间graceful-restartintervalinterval-value可选缺省情况下,OSPF协议的GR重启间隔时间为120秒2.
配置非IETF标准GRRestarter表1-46配置非IETF标准GRRestarter操作命令说明进入系统视图system-view-启动OSPF,进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-使能OSPF本地链路信令能力enablelink-local-signaling必选缺省情况下,OSPF本地链路信令能力处于关闭状态使能OSPF带外同步能力enableout-of-band-resynchronization必选缺省情况下,OSPF带外同步能力处于关闭状态使能OSPF协议的非IETF标准GR能力graceful-restart[nonstandard]必选缺省情况下,OSPF协议的非IETF标准GR能力处于关闭状态配置OSPF协议的GR重启间隔时间graceful-restartintervalinterval-value可选缺省情况下,OSPF协议的GR重启间隔时间为120秒1-341.
9.
2配置GRHelper可以在作为GRHelper的设备上配置基于OSPF的IETF标准或非IETF标准的GRHelper能力.
在作为GRHelper的设备上进行如下配置:1.
配置IETF标准GRHelper表1-47配置IETF标准GRHelper操作命令说明进入系统视图system-view-启动OSPF,进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-使能OpaqueLSA发布接收能力opaque-capabilityenable必选缺省情况下,OpaqueLSA发布接收能力处于关闭状态配置允许设备可以作哪些OSPF邻居的GRHelpergraceful-restarthelp{acl-number|prefixprefix-list}可选缺省情况下,设备可以作任一OSPF邻居的GRHelper2.
配置非IETF标准GRHelper表1-48配置非IETF标准GRHelper操作命令说明进入系统视图system-view-启动OSPF,进入OSPF视图ospf[process-id|router-idrouter-id|vpn-instancevpn-instance-name]*-使能OSPF本地链路信令能力enablelink-local-signaling必选缺省情况下,OSPF本地链路信令能力处于关闭状态使能OSPF带外同步能力enableout-of-band-resynchronization必选缺省情况下,OSPF带外同步能力处于关闭状态配置允许设备可以作哪些OSPF邻居的GRHelpergraceful-restarthelp{acl-number|prefixprefix-list}可选缺省情况下,设备可以作任一OSPF邻居的GRHelper1.
9.
3以GR方式重启OSPF进程设备进行主备倒换或者进行如下操作均可以以GR方式重启OSPF进程.
表1-49以GR方式重启OSPF进程操作命令说明以GR方式重启OSPF进程resetospf[process-id]processgraceful-restart必选请在用户视图下执行该命令1-351.
10配置OSPFNSR设备配置了OSPFNSR功能后不能再充当GRRestarter.
NSR(NonstopRouting,不间断路由)通过将OSPF链路状态信息从主用主控板备份到备用主控板,使设备在发生主备倒换时可以自行完成链路状态的恢复和路由的重新生成,邻接关系不会发生中断,从而避免了主备倒换对转发业务的影响.
GR特性需要周边设备配合才能完成路由信息的恢复,在网络应用中有一定的限制.
NSR特性不需要周边设备的配合,网络应用更加广泛.
表1-50配置OSPFNSR操作命令说明进入系统视图system-view-使能OSPFNSR功能ospfnon-stop-routing必选缺省情况下,OSPFNSR功能处于关闭状态1.
11配置OSPF与BFD联动BFD(BidirectionalForwardingDetection,双向转发检测)能够为OSPF邻居之间的链路提供快速检测功能.
当邻居之间的链路出现故障时,加快OSPF协议的收敛速度.
关于BFD的介绍和基本功能配置,请参见"可靠性配置指导"中的"BFD".
OSPF使用BFD来进行快速故障检测时,提供两种检测方式:control报文双向检测:需要建立OSPF邻居的两端设备均支持BFD配置.
echo报文单跳检测:仅需要一端设备支持BFD配置.
1.
11.
1control报文双向检测表1-51配置OSPF与BFD联动(control报文双向检测)操作命令说明进入系统视图system-view-进入接口视图interfaceinterface-typeinterface-number-指定接口上使能BFDospfbfdenable必选缺省情况下,运行OSPF的接口未使能BFD提供的链路检测功能1-36一个网段只能属于同一个区域,并且必须为每个运行OSPF协议的接口指明属于某一个特定的区域.
创建BFD会话的通信双方必须处于特定区域的同一网段.
1.
11.
2echo报文单跳检测表1-52配置OSPF与BFD联动(echo报文单跳检测)操作命令说明进入系统视图system-view-配置echo报文源地址bfdecho-source-ipip-address必选缺省情况下,没有配置echo报文源地址进入接口视图interfaceinterface-typeinterface-number-指定接口上使能BFD功能ospfbfdenableecho必选缺省情况下,运行OSPF的接口未使能BFD提供的链路检测功能1.
12OSPF显示和维护在完成上述配置后,在任意视图下执行display命令可以显示配置后OSPF的运行情况,通过查看显示信息验证配置的效果.
在用户视图下执行reset命令可以清除OSPF的统计信息、重启OSPF进程或重新向OSPF引入外部路由.
表1-53OSPF显示和维护操作命令显示OSPF的概要信息displayospf[process-id]brief[|{begin|exclude|include}regular-expression]显示OSPF的统计信息displayospf[process-id]cumulative[|{begin|exclude|include}regular-expression]显示OSPF的LSDB信息displayospf[process-id]lsdb[brief|[{ase|router|network|summary|asbr|nssa|opaque-link|opaque-area|opaque-as}[link-state-id]][originate-routeradvertising-router-id|self-originate]][|{begin|exclude|include}regular-expression]显示OSPF邻居的信息displayospf[process-id]peer[verbose][interface-typeinterface-number][neighbor-id][|{begin|exclude|include}regular-expression]显示OSPF各区域邻居的统计信息displayospf[process-id]peerstatistics[|{begin|exclude|include}regular-expression]显示OSPF下一跳信息displayospf[process-id]nexthop[|{begin|exclude|include}regular-expression]显示OSPF路由表的信息displayospf[process-id]routing[interfaceinterface-typeinterface-number][nexthopnexthop-address][|{begin|exclude|include}regular-expression]1-37操作命令显示OSPF虚连接信息displayospf[process-id]vlink[|{begin|exclude|include}regular-expression]显示OSPF请求列表displayospf[process-id]request-queue[interface-typeinterface-number][neighbor-id][|{begin|exclude|include}regular-expression]显示OSPF重传列表displayospf[process-id]retrans-queue[interface-typeinterface-number][neighbor-id][|{begin|exclude|include}regular-expression]显示OSPFABR及ASBR信息displayospf[process-id]abr-asbr[|{begin|exclude|include}regular-expression]显示OSPF接口信息displayospf[process-id]interface[all|interface-typeinterface-number][|{begin|exclude|include}regular-expression]显示OSPF错误信息displayospf[process-id]error[|{begin|exclude|include}regular-expression]显示OSPFASBR聚合信息displayospf[process-id]asbr-summary[ip-address{mask|mask-lengthbegin|exclude|include}regular-expression]显示全局RouterIDdisplayrouterid[|{begin|exclude|include}regular-expression]清除OSPF的统计信息resetospf[process-id]counters[neighbor[interface-typeinterface-number][router-id]]重启OSPF进程resetospf[process-id]process[graceful-restart]重新向OSPF引入外部路由resetospf[process-id]redistribution1.
13OSPF典型配置举例在配置举例中,只列出了与OSPF配置相关的命令.
1.
13.
1配置OSPF基本功能1.
组网需求所有的交换机都运行OSPF,并将整个自治系统划分为3个区域.
其中SwitchA和SwitchB作为ABR来转发区域之间的路由.
配置完成后,每台交换机都应学到AS内的到所有网段的路由.
1-382.
组网图图1-8OSPF基本配置组网图3.
配置步骤(1)配置各接口的IP地址(略)(2)配置OSPF基本配置#配置SwitchA.
system-view[SwitchA]ospf[SwitchA-ospf-1]area0[SwitchA-ospf-1-area-0.
0.
0.
0]network10.
1.
1.
00.
0.
0.
255[SwitchA-ospf-1-area-0.
0.
0.
0]quit[SwitchA-ospf-1]area1[SwitchA-ospf-1-area-0.
0.
0.
1]network10.
2.
1.
00.
0.
0.
255[SwitchA-ospf-1-area-0.
0.
0.
1]quit[SwitchA-ospf-1]quit#配置SwitchB.
system-view[SwitchB]ospf[SwitchB-ospf-1]area0[SwitchB-ospf-1-area-0.
0.
0.
0]network10.
1.
1.
00.
0.
0.
255[SwitchB-ospf-1-area-0.
0.
0.
0]quit[SwitchB-ospf-1]area2[SwitchB-ospf-1-area-0.
0.
0.
2]network10.
3.
1.
00.
0.
0.
255[SwitchB-ospf-1-area-0.
0.
0.
2]quit[SwitchB-ospf-1]quit#配置SwitchC.
system-view[SwitchC]ospf[SwitchC-ospf-1]area1[SwitchC-ospf-1-area-0.
0.
0.
1]network10.
2.
1.
00.
0.
0.
255[SwitchC-ospf-1-area-0.
0.
0.
1]network10.
4.
1.
00.
0.
0.
255[SwitchC-ospf-1-area-0.
0.
0.
1]quit[SwitchC-ospf-1]quit#配置SwitchD.
system-view[SwitchD]ospf[SwitchD-ospf-1]area2[SwitchD-ospf-1-area-0.
0.
0.
2]network10.
3.
1.
00.
0.
0.
255[SwitchD-ospf-1-area-0.
0.
0.
2]network10.
5.
1.
00.
0.
0.
255Area0Area1Area2SwitchCVlan-int10010.
1.
1.
2/24Vlan-int10010.
1.
1.
1/24Vlan-int30010.
4.
1.
1/24Vlan-int20010.
2.
1.
2/24SwitchBVlan-int20010.
3.
1.
1/24Vlan-int20010.
3.
1.
2/24SwitchAVlan-int20010.
2.
1.
1/24Vlan-int30010.
5.
1.
1/24SwitchD1-39[SwitchD-ospf-1-area-0.
0.
0.
2]quit[SwitchD-ospf-1]quit(3)检验配置结果#查看SwitchA的OSPF邻居.
[SwitchA]displayospfpeerverboseOSPFProcess1withRouterID10.
2.
1.
1NeighborsArea0.
0.
0.
0interface10.
1.
1.
1(Vlan-interface100)'sneighborsRouterID:10.
3.
1.
1Address:10.
1.
1.
2GRState:NormalState:FullMode:NbrisMasterPriority:1DR:10.
1.
1.
1BDR:10.
1.
1.
2MTU:0Deadtimerduein37secNeighborisupfor06:03:59AuthenticationSequence:[0]Neighborstatechangecount:5NeighborsArea0.
0.
0.
1interface10.
2.
1.
1(Vlan-interface200)'sneighborsRouterID:10.
4.
1.
1Address:10.
2.
1.
2GRState:NormalState:FullMode:NbrisMasterPriority:1DR:10.
2.
1.
1BDR:10.
2.
1.
2MTU:0Deadtimerduein32secNeighborisupfor06:03:12AuthenticationSequence:[0]Neighborstatechangecount:5#显示SwitchA的OSPF路由信息.
[SwitchA]displayospfroutingOSPFProcess1withRouterID10.
2.
1.
1RoutingTablesRoutingforNetworkDestinationCostTypeNextHopAdvRouterArea10.
2.
1.
0/2410Transit10.
2.
1.
110.
2.
1.
10.
0.
0.
110.
3.
1.
0/244Inter10.
1.
1.
210.
3.
1.
10.
0.
0.
010.
4.
1.
0/2413Stub10.
2.
1.
210.
4.
1.
10.
0.
0.
110.
5.
1.
0/2414Inter10.
1.
1.
210.
3.
1.
10.
0.
0.
010.
1.
1.
0/242Transit10.
1.
1.
110.
2.
1.
10.
0.
0.
0TotalNets:5IntraArea:3InterArea:2ASE:0NSSA:0#显示SwitchA的LSDB.
[SwitchA]displayospflsdbOSPFProcess1withRouterID10.
2.
1.
1LinkStateDatabaseArea:0.
0.
0.
0TypeLinkStateIDAdvRouterAgeLenSequenceMetricRouter10.
2.
1.
110.
2.
1.
11069368000001201-40Router10.
3.
1.
110.
3.
1.
178036800000110Network10.
1.
1.
110.
2.
1.
1106932800000100Sum-Net10.
5.
1.
010.
3.
1.
1780288000000312Sum-Net10.
2.
1.
010.
2.
1.
11069288000000F10Sum-Net10.
3.
1.
010.
3.
1.
178028800000142Sum-Net10.
4.
1.
010.
2.
1.
1769288000000F13Area:0.
0.
0.
1TypeLinkStateIDAdvRouterAgeLenSequenceMetricRouter10.
2.
1.
110.
2.
1.
176936800000120Router10.
4.
1.
110.
4.
1.
1166348800000120Network10.
2.
1.
110.
2.
1.
176932800000100Sum-Net10.
5.
1.
010.
2.
1.
1769288000000314Sum-Net10.
3.
1.
010.
2.
1.
11069288000000F4Sum-Net10.
1.
1.
010.
2.
1.
11069288000000F2Sum-Asbr10.
3.
1.
110.
2.
1.
11069288000000F2#查看SwitchD的路由表.
[SwitchD]displayospfroutingOSPFProcess1withRouterID10.
5.
1.
1RoutingTablesRoutingforNetworkDestinationCostTypeNextHopAdvRouterArea10.
2.
1.
0/2422Inter10.
3.
1.
110.
3.
1.
10.
0.
0.
210.
3.
1.
0/2410Transit10.
3.
1.
210.
3.
1.
10.
0.
0.
210.
4.
1.
0/2425Inter10.
3.
1.
110.
3.
1.
10.
0.
0.
210.
5.
1.
0/2410Stub10.
5.
1.
110.
5.
1.
10.
0.
0.
210.
1.
1.
0/2412Inter10.
3.
1.
110.
3.
1.
10.
0.
0.
2TotalNets:5IntraArea:2InterArea:3ASE:0NSSA:0#在SwitchD上使用Ping进行测试连通性.
[SwitchD]ping10.
4.
1.
1PING10.
4.
1.
1:56databytes,pressCTRL_CtobreakReplyfrom10.
4.
1.
1:bytes=56Sequence=2ttl=253time=2msReplyfrom10.
4.
1.
1:bytes=56Sequence=2ttl=253time=1msReplyfrom10.
4.
1.
1:bytes=56Sequence=3ttl=253time=1msReplyfrom10.
4.
1.
1:bytes=56Sequence=4ttl=253time=1msReplyfrom10.
4.
1.
1:bytes=56Sequence=5ttl=253time=1ms---10.
4.
1.
1pingstatistics---5packet(s)transmitted5packet(s)received0.
00%packetlossround-tripmin/avg/max=1/1/2ms1.
13.
2配置OSPF引入自治系统外部路由1.
组网需求所有的交换机都运行OSPF,整个自治系统划分为3个区域.
其中SwitchA和SwitchB作为ABR来转发区域之间的路由.
在SwitchC上配置为ASBR引入外部路由(静态路由),且路由信息可正确的在AS内传播.
1-412.
组网图图1-9配置OSPF引入自治系统外部路由3.
配置步骤(1)配置各接口的IP地址(略)(2)配置OSPF基本功能(同前例1.
13.
1)(3)配置引入自治系统外部路由#在SwitchC上配置一条到目的网段3.
1.
2.
0/24的静态路由.
system-view[SwitchC]iproute-static3.
1.
2.
12410.
4.
1.
2#在SwitchC上配置OSPF引入静态路由.
[SwitchC]ospf1[SwitchC-ospf-1]import-routestatic(4)检验配置效果#查看SwitchD的ABR/ASBR信息.
displayospfabr-asbrOSPFProcess1withRouterID10.
5.
1.
1RoutingTabletoABRandASBRTypeDestinationAreaCostNexthopRtTypeIntra10.
3.
1.
10.
0.
0.
21010.
3.
1.
1ABRInter10.
4.
1.
10.
0.
0.
22210.
3.
1.
1ASBR#查看SwitchD的OSPF路由表.
displayospfroutingOSPFProcess1withRouterID10.
5.
1.
1RoutingTablesRoutingforNetworkDestinationCostTypeNextHopAdvRouterArea10.
2.
1.
0/2422Inter10.
3.
1.
110.
3.
1.
10.
0.
0.
210.
3.
1.
0/2410Transit10.
3.
1.
210.
3.
1.
10.
0.
0.
210.
4.
1.
0/2425Inter10.
3.
1.
110.
3.
1.
10.
0.
0.
210.
5.
1.
0/2410Stub10.
5.
1.
110.
5.
1.
10.
0.
0.
210.
1.
1.
0/2412Inter10.
3.
1.
110.
3.
1.
10.
0.
0.
2RoutingforASEsDestinationCostTypeTagNextHopAdvRouter3.
1.
2.
0/241Type2110.
3.
1.
110.
4.
1.
11-42TotalNets:6IntraArea:2InterArea:3ASE:1NSSA:01.
13.
3配置OSPF发布聚合路由1.
组网需求SwitchA和SwitchB位于AS200内,AS200内使用OSPF作为IGP协议.
SwitchC、SwitchD和SwitchE位于AS100内,AS100内使用OSPF作为IGP协议.
SwitchB和SwitchC之间建立EBGP连接,配置BGP引入OSPF和直连路由,配置OSPF进程引入BGP路由.
为了减小SwitchA的路由表规模,在SwitchB上配置路由聚合,只发布聚合后的路由10.
0.
0.
0/8.
2.
组网图图1-10配置OSPF发布聚合路由3.
配置步骤(1)配置接口的IP地址(略)(2)配置OSPF#配置SwitchA.
system-view[SwitchA]ospf[SwitchA-ospf-1]area0[SwitchA-ospf-1-area-0.
0.
0.
0]network11.
2.
1.
00.
0.
0.
255[SwitchA-ospf-1-area-0.
0.
0.
0]quit[SwitchA-ospf-1]quit#配置SwitchB.
system-view[SwitchB]ospf[SwitchB-ospf-1]area0[SwitchB-ospf-1-area-0.
0.
0.
0]network11.
2.
1.
00.
0.
0.
255[SwitchB-ospf-1-area-0.
0.
0.
0]quitSwitchASwitchBSwitchDSwitchESwitchCVlan-int40010.
1.
1.
1/24Vlan-int40010.
1.
1.
2/24Vlan-int30010.
2.
1.
2/24Vlan-int30010.
2.
1.
1/24Vlan-int20011.
1.
1.
2/24Vlan-int20011.
1.
1.
1/24EBGPAS200AS100Vlan-int10011.
2.
1.
1/24Vlan-int10011.
2.
1.
2/24Vlan-int50010.
3.
1.
1/24Vlan-int60010.
4.
1.
1/241-43[SwitchB-ospf-1]quit#配置SwitchC.
system-view[SwitchC]ospf[SwitchC-ospf-1]area0[SwitchC-ospf-1-area-0.
0.
0.
0]network10.
1.
1.
00.
0.
0.
255[SwitchC-ospf-1-area-0.
0.
0.
0]network10.
2.
1.
00.
0.
0.
255[SwitchC-ospf-1-area-0.
0.
0.
0]quit[SwitchC-ospf-1]quit#配置SwitchD.
system-view[SwitchD]ospf[SwitchD-ospf-1]area0[SwitchD-ospf-1-area-0.
0.
0.
0]network10.
1.
1.
00.
0.
0.
255[SwitchD-ospf-1-area-0.
0.
0.
0]network10.
3.
1.
00.
0.
0.
255[SwitchD-ospf-1-area-0.
0.
0.
0]quit#配置SwitchE.
system-view[SwitchE]ospf[SwitchE-ospf-1]area0[SwitchE-ospf-1-area-0.
0.
0.
0]network10.
2.
1.
00.
0.
0.
255[SwitchE-ospf-1-area-0.
0.
0.
0]network10.
4.
1.
00.
0.
0.
255[SwitchE-ospf-1-area-0.
0.
0.
0]quit[SwitchE-ospf-1]quit(3)配置BGP,引入OSPF和直连路由#配置SwitchB.
[SwitchB]bgp200[SwitchB-bgp]peer11.
1.
1.
2as100[SwitchB-bgp]import-routeospf[SwitchB-bgp]import-routedirect[SwitchB-bgp]quit#配置SwitchC.
[SwitchC]bgp100[SwitchC-bgp]peer11.
1.
1.
1as200[SwitchC-bgp]import-routeospf[SwitchC-bgp]import-routedirect[SwitchC-bgp]quit(4)在SwitchB和SwitchC上配置OSPF引入BGP路由#在SwitchB上配置OSPF引入BGP路由.
[SwitchB]ospf[SwitchB-ospf-1]import-routebgp#在SwitchC上配置OSPF引入BGP路由.
[SwitchC]ospf[SwitchC-ospf-1]import-routebgp#查看SwitchA的路由表信息.
[SwitchA]displayiprouting-tableRoutingTables:PublicDestinations:8Routes:8Destination/MaskProtoPreCostNextHopInterface1-4410.
1.
1.
0/24O_ASE150111.
2.
1.
1Vlan10010.
2.
1.
0/24O_ASE150111.
2.
1.
1Vlan10010.
3.
1.
0/24O_ASE150111.
2.
1.
1Vlan10010.
4.
1.
0/24O_ASE150111.
2.
1.
1Vlan10011.
2.
1.
0/24Direct0011.
2.
1.
2Vlan10011.
2.
1.
2/32Direct00127.
0.
0.
1InLoop0127.
0.
0.
0/8Direct00127.
0.
0.
1InLoop0127.
0.
0.
1/32Direct00127.
0.
0.
1InLoop0(5)在SwitchB上配置路由聚合,只发布聚合路由10.
0.
0.
0/8.
[SwitchB-ospf-1]asbr-summary10.
0.
0.
08#查看SwitchA的路由表信息.
[SwitchA]displayiprouting-tableRoutingTables:PublicDestinations:5Routes:5Destination/MaskProtoPreCostNextHopInterface10.
0.
0.
0/8O_ASE150211.
2.
1.
1Vlan10011.
2.
1.
0/24Direct0011.
2.
1.
2Vlan10011.
2.
1.
2/32Direct00127.
0.
0.
1InLoop0127.
0.
0.
0/8Direct00127.
0.
0.
1InLoop0127.
0.
0.
1/32Direct00127.
0.
0.
1InLoop0可以看出,路由10.
1.
1.
0/24、10.
2.
1.
0/24、10.
3.
1.
0/24、10.
4.
1.
0/24已经聚合为一条路由10.
0.
0.
0/8.
1.
13.
4配置OSPF的Stub区域1.
组网需求所有的交换机都运行OSPF,整个自治系统划分为3个区域.
其中SwitchA和SwitchB作为ABR来转发区域之间的路由,SwitchD作为ASBR引入了外部路由(静态路由).
要求将Area1配置为Stub区域,减少通告到此区域内的LSA数量,但不影响路由的可达性.
2.
组网图图1-11配置OSPFStub区域组网图3.
配置步骤(1)配置接口的IP地址(略)(2)配置OSPF基本功能(同前例1.
13.
1)(3)配置SwitchD引入静态路由Area0Area1StubArea2SwitchCVlan-int10010.
1.
1.
2/24Vlan-int10010.
1.
1.
1/24Vlan-int30010.
4.
1.
1/24Vlan-int20010.
2.
1.
2/24SwitchBVlan-int20010.
3.
1.
1/24Vlan-int20010.
3.
1.
2/24SwitchAVlan-int20010.
2.
1.
1/24Vlan-int30010.
5.
1.
1/24SwitchDASBR1-45system-view[SwitchD]iproute-static3.
1.
2.
12410.
5.
1.
2[SwitchD]ospf[SwitchD-ospf-1]import-routestatic[SwitchD-ospf-1]quit#查看SwitchC的ABR/ASBR信息.
displayospfabr-asbrOSPFProcess1withRouterID10.
4.
1.
1RoutingTabletoABRandASBRTypeDestinationAreaCostNexthopRtTypeIntra10.
2.
1.
10.
0.
0.
1310.
2.
1.
1ABRInter10.
3.
1.
10.
0.
0.
1510.
2.
1.
1ABRInter10.
5.
1.
10.
0.
0.
1710.
2.
1.
1ASBR#查看SwitchC的OSPF路由表.
displayospfroutingOSPFProcess1withRouterID10.
4.
1.
1RoutingTablesRoutingforNetworkDestinationCostTypeNextHopAdvRouterArea10.
2.
1.
0/243Transit10.
2.
1.
210.
2.
1.
10.
0.
0.
110.
3.
1.
0/247Inter10.
2.
1.
110.
2.
1.
10.
0.
0.
110.
4.
1.
0/243Stub10.
4.
1.
110.
4.
1.
10.
0.
0.
110.
5.
1.
0/2417Inter10.
2.
1.
110.
2.
1.
10.
0.
0.
110.
1.
1.
0/245Inter10.
2.
1.
110.
2.
1.
10.
0.
0.
1RoutingforASEsDestinationCostTypeTagNextHopAdvRouter3.
1.
2.
0/241Type2110.
2.
1.
110.
5.
1.
1TotalNets:6IntraArea:2InterArea:3ASE:1NSSA:0当SwitchC所在区域为普通区域时,可以看到路由表中存在AS外部的路由.
(4)配置Area1为Stub区域#配置SwitchA.
system-view[SwitchA]ospf[SwitchA-ospf-1]area1[SwitchA-ospf-1-area-0.
0.
0.
1]stub[SwitchA-ospf-1-area-0.
0.
0.
1]quit[SwitchA-ospf-1]quit#配置SwitchC.
system-view[SwitchC]ospf[SwitchC-ospf-1]area11-46[SwitchC-ospf-1-area-0.
0.
0.
1]stub[SwitchC-ospf-1-area-0.
0.
0.
1]quit[SwitchC-ospf-1]quit#显示SwitchC的OSPF路由表.
[SwitchC]displayospfroutingOSPFProcess1withRouterID10.
4.
1.
1RoutingTablesRoutingforNetworkDestinationCostTypeNextHopAdvRouterArea0.
0.
0.
0/04Inter10.
2.
1.
110.
2.
1.
10.
0.
0.
110.
2.
1.
0/243Transit10.
2.
1.
210.
2.
1.
10.
0.
0.
110.
3.
1.
0/247Inter10.
2.
1.
110.
2.
1.
10.
0.
0.
110.
4.
1.
0/243Stub10.
4.
1.
110.
4.
1.
10.
0.
0.
110.
5.
1.
0/2417Inter10.
2.
1.
110.
2.
1.
10.
0.
0.
110.
1.
1.
0/245Inter10.
2.
1.
110.
2.
1.
10.
0.
0.
1TotalNets:6IntraArea:2InterArea:4ASE:0NSSA:0当把SwitchC所在区域配置为Stub区域时,已经看不到AS外部的路由,取而代之的是一条缺省路由.
#配置禁止向Stub区域通告Type3LSA.
[SwitchA]ospf[SwitchA-ospf-1]area1[SwitchA-ospf-1-area-0.
0.
0.
1]stubno-summary[SwitchA-ospf-1-area-0.
0.
0.
1]quit#查看SwitchC的OSPF路由表.
[SwitchC]displayospfroutingOSPFProcess1withRouterID10.
4.
1.
1RoutingTablesRoutingforNetworkDestinationCostTypeNextHopAdvRouterArea0.
0.
0.
0/04Inter10.
2.
1.
110.
2.
1.
10.
0.
0.
110.
2.
1.
0/243Transit10.
2.
1.
210.
4.
1.
10.
0.
0.
110.
4.
1.
0/243Stub10.
4.
1.
110.
4.
1.
10.
0.
0.
1TotalNets:3IntraArea:2InterArea:1ASE:0NSSA:0禁止向Stub区域通告SummaryLSA后,Stub路由器的路由表项进一步减少,只保留了一条通往区域外部的缺省路由.
1-471.
13.
5配置OSPF的NSSA区域1.
组网需求所有的交换机都运行OSPF,整个自治系统划分为3个区域.
其中SwitchA和SwitchB作为ABR来转发区域之间的路由.
要求将Area1配置为NSSA区域,同时将SwitchC配置为ASBR引入外部路由(静态路由),且路由信息可正确的在AS内传播.
2.
组网图图1-12配置OSPFNSSA区域组网图3.
配置步骤(1)配置各接口的IP地址(略)(2)配置OSPF基本功能(同前例1.
13.
1)(3)配置Area1区域为NSSA区域#配置SwitchA.
system-view[SwitchA]ospf[SwitchA-ospf-1]area1[SwitchA-ospf-1-area-0.
0.
0.
1]nssadefault-route-advertiseno-summary[SwitchA-ospf-1-area-0.
0.
0.
1]quit[SwitchA-ospf-1]quit#配置SwitchC.
system-view[SwitchC]ospf[SwitchC-ospf-1]area1[SwitchC-ospf-1-area-0.
0.
0.
1]nssa[SwitchC-ospf-1-area-0.
0.
0.
1]quit[SwitchC-ospf-1]quit如果NSSA区域内路由器(SwitchC)需要获取通往AS内其他区域的路由,ABR(SwitchA)上必须配置default-route-advertise参数,这样SwitchC才可以获取到缺省路由.
建议在ABR(SwitchA)上配置no-summary参数,这样可以减少NSSA路由器的路由表数量.
其他NSSA路由器只需配置nssa命令就可以.
#查看SwitchC的OSPF路由表.
[SwitchC]displayospfrouting1-48OSPFProcess1withRouterID10.
4.
1.
1RoutingTablesRoutingforNetworkDestinationCostTypeNextHopAdvRouterArea0.
0.
0.
0/065536Inter10.
2.
1.
110.
2.
1.
10.
0.
0.
110.
2.
1.
0/2465535Transit10.
2.
1.
210.
4.
1.
10.
0.
0.
110.
4.
1.
0/243Stub10.
4.
1.
110.
4.
1.
10.
0.
0.
1TotalNets:3IntraArea:2InterArea:1ASE:0NSSA:0(4)配置SwitchC引入静态路由[SwitchC]iproute-static3.
1.
3.
12410.
4.
1.
2[SwitchC]ospf[SwitchC-ospf-1]import-routestatic[SwitchC-ospf-1]quit#查看SwitchD的OSPF路由表.
displayospfroutingOSPFProcess1withRouterID10.
5.
1.
1RoutingTablesRoutingforNetworkDestinationCostTypeNextHopAdvRouterArea10.
2.
1.
0/2422Inter10.
3.
1.
110.
3.
1.
10.
0.
0.
210.
3.
1.
0/2410Transit10.
3.
1.
210.
3.
1.
10.
0.
0.
210.
4.
1.
0/2425Inter10.
3.
1.
110.
3.
1.
10.
0.
0.
210.
5.
1.
0/2410Stub10.
5.
1.
110.
5.
1.
10.
0.
0.
210.
1.
1.
0/2412Inter10.
3.
1.
110.
3.
1.
10.
0.
0.
2RoutingforASEsDestinationCostTypeTagNextHopAdvRouter3.
1.
3.
0/241Type2110.
3.
1.
110.
2.
1.
1TotalNets:6IntraArea:2InterArea:3ASE:1NSSA:0在SwitchD上可以看到NSSA区域引入的一条AS外部的路由.
1.
13.
6配置OSPF的DR选择1.
组网需求SwitchA、SwitchB、SwitchC、SwitchD在同一网段,运行OSPF协议;配置SwitchA为DR,SwitchC为BDR.
1-49图1-13配置OSPF优先级的DR选择组网图2.
配置思路(1)配置各接口的IP地址(2)配置OSPF基本功能(3)改变交换机接口的路由器优先级使SwitchA成为DR,SwitchC成为BDR.
3.
配置步骤(1)配置各接口的IP地址(略)(2)配置OSPF基本功能#配置SwitchA.
system-view[SwitchA]routerid1.
1.
1.
1[SwitchA]ospf[SwitchA-ospf-1]area0[SwitchA-ospf-1-area-0.
0.
0.
0]network192.
168.
1.
00.
0.
0.
255[SwitchA-ospf-1-area-0.
0.
0.
0]quit[SwitchA-ospf-1]quit#配置SwitchB.
system-view[SwitchB]routerid2.
2.
2.
2[SwitchB]ospf[SwitchB-ospf-1]area0[SwitchB-ospf-1-area-0.
0.
0.
0]network192.
168.
1.
00.
0.
0.
255[SwitchB-ospf-1-area-0.
0.
0.
0]quit[SwitchB-ospf-1]quit#配置SwitchC.
system-view[SwitchC]routerid3.
3.
3.
3[SwitchC]ospf[SwitchC-ospf-1]area0[SwitchC-ospf-1-area-0.
0.
0.
0]network192.
168.
1.
00.
0.
0.
255[SwitchC-ospf-1-area-0.
0.
0.
0]quit[SwitchC-ospf-1]quit#配置SwitchD.
system-view[SwitchD]routerid4.
4.
4.
4[SwitchD]ospf[SwitchD-ospf-1]area0[SwitchD-ospf-1-area-0.
0.
0.
0]network192.
168.
1.
00.
0.
0.
2551-50[SwitchD-ospf-1-area-0.
0.
0.
0]quit[SwitchD-ospf-1]return#查看SwitchA的邻居信息.
[SwitchA]displayospfpeerverboseOSPFProcess1withRouterID1.
1.
1.
1NeighborsArea0.
0.
0.
0interface192.
168.
1.
1(Vlan-interface1)'sneighborsRouterID:2.
2.
2.
2Address:192.
168.
1.
2GRState:NormalState:2-WayMode:NonePriority:1DR:192.
168.
1.
4BDR:192.
168.
1.
3MTU:0Deadtimerduein38secNeighborisupfor00:01:31AuthenticationSequence:[0]RouterID:3.
3.
3.
3Address:192.
168.
1.
3GRState:NormalState:FullMode:NbrisMasterPriority:1DR:192.
168.
1.
4BDR:192.
168.
1.
3MTU:0Deadtimerduein31secNeighborisupfor00:01:28AuthenticationSequence:[0]RouterID:4.
4.
4.
4Address:192.
168.
1.
4GRState:NormalState:FullMode:NbrisMasterPriority:1DR:192.
168.
1.
4BDR:192.
168.
1.
3MTU:0Deadtimerduein31secNeighborisupfor00:01:28AuthenticationSequence:[0]可以看到SwitchD为DR,SwitchC为BDR.
(3)配置接口上的路由器优先级#配置SwitchA.
[SwitchA]interfacevlan-interface1[SwitchA-Vlan-interface1]ospfdr-priority100[SwitchA-Vlan-interface1]quit#配置SwitchB.
[SwitchB]interfacevlan-interface1[SwitchB-Vlan-interface1]ospfdr-priority0[SwitchB-Vlan-interface1]quit#配置SwitchC.
[SwitchC]interfacevlan-interface1[SwitchC-Vlan-interface1]ospfdr-priority2[SwitchC-Vlan-interface1]quit#查看SwitchD的邻居信息.
displayospfpeerverboseOSPFProcess1withRouterID4.
4.
4.
4NeighborsArea0.
0.
0.
0interface192.
168.
1.
4(Vlan-interface1)'sneighborsRouterID:1.
1.
1.
1Address:192.
168.
1.
1GRState:NormalState:FullMode:NbrisSlavePriority:1001-51DR:192.
168.
1.
4BDR:192.
168.
1.
3MTU:0Deadtimerduein31secNeighborisupfor00:11:17AuthenticationSequence:[0]RouterID:2.
2.
2.
2Address:192.
168.
1.
2GRState:NormalState:FullMode:NbrisSlavePriority:0DR:192.
168.
1.
4BDR:192.
168.
1.
3MTU:0Deadtimerduein35secNeighborisupfor00:11:19AuthenticationSequence:[0]RouterID:3.
3.
3.
3Address:192.
168.
1.
3GRState:NormalState:FullMode:NbrisSlavePriority:2DR:192.
168.
1.
4BDR:192.
168.
1.
3MTU:0Deadtimerduein33secNeighborisupfor00:11:15AuthenticationSequence:[0]可以看到,网络中DR/BDR并没有改变.
网络中DR/BDR已经存在的情况下,接口上的路由器优先级的配置并不会立即生效.
(4)重启OSPF进程#重启SwitchD的进程.
resetospf1processWarning:ResetOSPFprocess[Y/N]:y#查看SwitchD的邻居信息.
displayospfpeerverboseOSPFProcess1withRouterID4.
4.
4.
4NeighborsArea0.
0.
0.
0interface192.
168.
1.
4(Vlan-interface1)'sneighborsRouterID:1.
1.
1.
1Address:192.
168.
1.
1GRState:NormalState:FullMode:NbrisSlavePriority:100DR:192.
168.
1.
1BDR:192.
168.
1.
3MTU:0Deadtimerduein39secNeighborisupfor00:01:40AuthenticationSequence:[0]RouterID:2.
2.
2.
2Address:192.
168.
1.
2GRState:NormalState:2-WayMode:NonePriority:0DR:192.
168.
1.
1BDR:192.
168.
1.
3MTU:0Deadtimerduein35secNeighborisupfor00:01:44AuthenticationSequence:[0]RouterID:3.
3.
3.
3Address:192.
168.
1.
3GRState:NormalState:FullMode:NbrisSlavePriority:2DR:192.
168.
1.
1BDR:192.
168.
1.
3MTU:01-52Deadtimerduein39secNeighborisupfor00:01:41AuthenticationSequence:[0]可以看到SwitchA成为DR,SwitchC为BDR.
如果邻居的状态是Full,这说明它和邻居之间形成了邻接关系;如果邻居的状态是2-Way,则说明它们都不是DR或BDR,两者之间不需要交换LSA.
#查看OSPF接口的状态.
[SwitchA]displayospfinterfaceOSPFProcess1withRouterID1.
1.
1.
1InterfacesArea:0.
0.
0.
0IPAddressTypeStateCostPriDRBDR192.
168.
1.
1BroadcastDR1100192.
168.
1.
1192.
168.
1.
3[SwitchB]displayospfinterfaceOSPFProcess1withRouterID2.
2.
2.
2InterfacesArea:0.
0.
0.
0IPAddressTypeStateCostPriDRBDR192.
168.
1.
2BroadcastDROther10192.
168.
1.
1192.
168.
1.
3如果OSPF接口的状态是DROther,则说明它既不是DR,也不是BDR.
1.
13.
7配置OSPF虚连接1.
组网需求Area2与Area0没有直接相连.
Area1被用作传输区域(TransitArea)来连接Area2和Area0.
SwitchB和SwitchC之间配置一条虚连接.
配置完成后,SwitchB能够学到Area2中的路由.
1-532.
组网图图1-14配置OSPF虚链路组网图3.
配置步骤(1)配置各接口的IP地址(略)(2)配置OSPF基本功能#配置SwitchA.
system-view[SwitchA]ospf1router-id1.
1.
1.
1[SwitchA-ospf-1]area0[SwitchA-ospf-1-area-0.
0.
0.
0]network10.
1.
1.
00.
0.
0.
255[SwitchA-ospf-1-area-0.
0.
0.
0]quit#配置SwitchB.
system-view[SwitchB]ospf1router-id2.
2.
2.
2[SwitchB-ospf-1]area0[SwitchB-ospf-1-area-0.
0.
0.
0]network10.
1.
1.
00.
0.
0.
255[SwitchB-ospf-1-area-0.
0.
0.
0]quit[SwitchB-ospf-1]area1[SwitchB–ospf-1-area-0.
0.
0.
1]network10.
2.
1.
00.
0.
0.
255[SwitchB–ospf-1-area-0.
0.
0.
1]quit[SwitchB-ospf-1]quit#配置SwitchC.
system-view[SwitchC]ospf1router-id3.
3.
3.
3[SwitchC-ospf-1]area1[SwitchC-ospf-1-area-0.
0.
0.
1]network10.
2.
1.
00.
0.
0.
255[SwitchC-ospf-1-area-0.
0.
0.
1]quit[SwitchC-ospf-1]area2[SwitchC–ospf-1-area-0.
0.
0.
2]network10.
3.
1.
00.
0.
0.
255[SwitchC–ospf-1-area-0.
0.
0.
2]quit[SwitchC-ospf-1]quit#配置SwitchD.
system-view[SwitchD]ospf1router-id4.
4.
4.
4[SwitchD-ospf-1]area2[SwitchD-ospf-1-area-0.
0.
0.
2]network10.
3.
1.
00.
0.
0.
255[SwitchD-ospf-1-area-0.
0.
0.
2]quit#查看SwitchB的OSPF路由表.
[SwitchB]displayospfrouting1-54OSPFProcess1withRouterID2.
2.
2.
2RoutingTablesRoutingforNetworkDestinationCostTypeNextHopAdvRouterArea10.
2.
1.
0/242Transit10.
2.
1.
13.
3.
3.
30.
0.
0.
110.
1.
1.
0/242Transit10.
1.
1.
22.
2.
2.
20.
0.
0.
0TotalNets:2IntraArea:2InterArea:0ASE:0NSSA:0由于Area0没有与Area2直接相连,所以SwitchB的路由表中没有Area2的路由.
(3)配置虚连接#配置SwitchB.
[SwitchB]ospf[SwitchB-ospf-1]area1[SwitchB-ospf-1-area-0.
0.
0.
1]vlink-peer3.
3.
3.
3[SwitchB-ospf-1-area-0.
0.
0.
1]quit[SwitchB-ospf-1]quit#配置SwitchC.
[SwitchC]ospf1[SwitchC-ospf-1]area1[SwitchC-ospf-1-area-0.
0.
0.
1]vlink-peer2.
2.
2.
2[SwitchC-ospf-1-area-0.
0.
0.
1]quit#查看SwitchB的OSPF路由表.
[SwitchB]displayospfroutingOSPFProcess1withRouterID2.
2.
2.
2RoutingTablesRoutingforNetworkDestinationCostTypeNextHopAdvRouterArea10.
2.
1.
0/242Transit10.
2.
1.
13.
3.
3.
30.
0.
0.
110.
3.
1.
0/245Inter10.
2.
1.
23.
3.
3.
30.
0.
0.
010.
1.
1.
0/242Transit10.
1.
1.
22.
2.
2.
20.
0.
0.
0TotalNets:3IntraArea:2InterArea:1ASE:0NSSA:0可以看到,SwitchB已经学到了Area2的路由10.
3.
1.
0/24.
1.
13.
8OSPFGR配置举例1.
组网需求SwitchA、SwitchB和SwitchC既属于同一自治系统,也属于同一OSPF域,通过OSPF协议实现网络互连,并提供GR机制.
SwitchA作为非IETF标准GRRestarter,SwitchB和SwitchC作为GRHelper并且通过GR机制与SwitchA保持带外同步.
1-552.
组网图图1-15OSPFGR配置组网图3.
配置步骤(1)配置各接口的IP地址(略)(2)配置OSPF基本功能#配置SwitchA.
system-view[SwitchA]routerid1.
1.
1.
1[SwitchA]ospf100[SwitchA-ospf-100]area0[SwitchA-ospf-100-area-0.
0.
0.
0]network192.
1.
1.
00.
0.
0.
255[SwitchA-ospf-100-area-0.
0.
0.
0]quit#配置SwitchB.
system-view[SwitchB]routerid2.
2.
2.
2[SwitchB]ospf100[SwitchB-ospf-100]area0[SwitchB-ospf-100-area-0.
0.
0.
0]network192.
1.
1.
00.
0.
0.
255[SwitchB-ospf-100-area-0.
0.
0.
0]quit#配置SwitchC.
system-view[SwitchC]routerid3.
3.
3.
3[SwitchC]ospf100[SwitchC-ospf-100]area0[SwitchC-ospf-100-area-0.
0.
0.
0]network192.
1.
1.
00.
0.
0.
255[SwitchC-ospf-100-area-0.
0.
0.
0]quit(3)配置OSPFGR#配置SwitchA作为非IETF标准GRRestarter,即使能OSPF进程100的本地链路信令能力、OSPF带外同步能力和非IETF标准GR能力.
[SwitchA-ospf-100]enablelink-local-signaling[SwitchA-ospf-100]enableout-of-band-resynchronization[SwitchA-ospf-100]graceful-restart[SwitchA-ospf-100]return#配置SwitchB作为GRHelper,即使能OSPF进程100的本地链路信令能力和OSPF带外同步能力.
[SwitchB-ospf-100]enablelink-local-signaling[SwitchB-ospf-100]enableout-of-band-resynchronizationVlan-int100192.
1.
1.
1/24Vlan-int100192.
1.
1.
3/24Vlan-int100192.
1.
1.
2/24GRhelperGRhelperGRrestarterSwitchASwitchCSwitchBRouterID:1.
1.
1.
1RouterID:2.
2.
2.
2RouterID:3.
3.
3.
31-56#配置SwitchC作为GRHelper,即使能OSPF进程100的本地链路信令能力和OSPF带外同步能力.
[SwitchC-ospf-100]enablelink-local-signaling[SwitchC-ospf-100]enableout-of-band-resynchronization(4)检验配置效果#运行稳定后,打开SwitchA的OSPF平滑启动事件调试信息开关.
在SwitchA上以GR方式重启OSPF进程.
debuggingospfeventgraceful-restartterminalmonitorterminaldebuggingresetospf100processgraceful-restartWarning:ResetOSPFprocess[Y/N]:y%Dec1209:36:12:5002006SwitchARM/3/RMLOG:OSPF-NBRCHANGE:Process100,Neighbour192.
1.
1.
1(Vlan100)fromFulltoDownOSPF100:Intf192.
1.
1.
1RcvInterfaceDownStateBackupDR->Down.
OSPF100nonstandardGRStartedforOSPFRouterOSPF100notifyRMthatOSPFprocesswillenterGR.
OSPF100createdGRwaittimer,timeoutintervalis40(s).
OSPF100createdGRIntervaltimer,timeoutintervalis120(s).
OSPF100:Intf192.
1.
1.
1RcvInterfaceUpStateDown->Waiting.
OSPF100:Intf192.
1.
1.
1RcvBackupSeenStateWaiting->BackupDR.
OSPF100createdOOBProgresstimerforneighbor192.
1.
1.
2.
OSPF100restartedOOBProgresstimerforneighbor192.
1.
1.
2.
OSPF100restartedOOBProgresstimerforneighbor192.
1.
1.
2.
%Oct2209:36:12:5662008SwitchARM/3/RMLOG:OSPF-NBRCHANGE:Process100,Neighbour192.
1.
1.
2(Vlan100)fromLoadingtoFullOSPF100restartedOOBProgresstimerforneighbor192.
1.
1.
2.
OSPF100deletedOOBProgresstimerforneighbor192.
1.
1.
2.
OSPF100GrWaitTimeouttimerfired.
OSPF100deletedGRwaittimer.
OSPF100deletedGRIntervaltimer.
OSPF100GRCompletedforOSPFRouterOSPF100notifiedRMthatOSPFprocessleftGR.
RMnotifiedthatallprotocolleftGR.
OSPF100startedflushingSTALELSAafterallprotocolleftGR.
OSPF100:FlushStaleAreaLSAsOSPF100:StartFlushStaleASE+NSSALSAsOSPF100:EndFlushStaleASE+NSSALSAs从上面的信息可以看出SwitchA在SwitchB的协助下完成了GR.
1.
13.
9OSPFNSR配置举例1.
组网需求如图1-16所示,SwitchS、SwitchA、SwitchB属于同一OSPF区域,通过OSPF协议实现网络互连.
要求对SwitchS进行主备倒换时,SwitchA和SwitchB到SwitchS的邻居没有中断,SwitchA到SwitchB的流量没有中断.
1-572.
组网图图1-16OSPFNSR配置组网图3.
配置步骤(1)配置各交换机接口的IP地址和OSPF协议请按照上面组网图配置各接口的IP地址和子网掩码,具体配置过程略.
配置各交换机之间采用OSPF协议进行互连,确保SwitchS、SwitchA和SwitchB之间能够在网络层互通,并且各交换机之间能够借助OSPF协议实现动态路由更新.
具体配置过程略.
(2)配置OSPFNSR#使能SwitchS的OSPFNSR功能.
system-view[SwitchS]ospfnon-stop-routing(3)检验配置效果SwitchS分别与SwitchA和SwitchB建立邻接关系后,三台交换机开始交换路由信息.
当网络稳定后,SwitchS进行主备倒换.
在SwitchS主备倒换期间,使用displayospfpeer命令查看SwitchA和SwitchB上到SwitchS的邻居是否发生任何变化;使用displayospfrouting命令查看SwitchA上是否有SwitchB上Loopback接口的路由,SwitchB上是否有SwitchA上Loopback接口的路由.
#SwitchS主备倒换.
[SwitchS]slaveswitchoverenable[SwitchS]slaveswitchoverCaution!
!
!
Confirmtoswitchslavetomaster[Y/N]:y#查看SwitchA上OSPF协议的邻居和路由.
displayospfpeerOSPFProcess1withRouterID192.
168.
1.
40NeighborBriefInformationArea:0.
0.
0.
0RouterIDAddressPriDead-TimeInterfaceState192.
168.
1.
4112.
12.
12.
2140Vlan100Full/BDRdisplayospfroutingOSPFProcess1withRouterID192.
168.
1.
40RoutingTablesRoutingforNetworkDestinationCostTypeNextHopAdvRouterArea44.
44.
44.
44/322Stub12.
12.
12.
244.
44.
44.
440.
0.
0.
014.
14.
14.
0/242Transit12.
12.
12.
2192.
168.
1.
410.
0.
0.
022.
22.
22.
22/320Stub22.
22.
22.
22192.
168.
1.
400.
0.
0.
012.
12.
12.
0/241Transit12.
12.
12.
1192.
168.
1.
400.
0.
0.
0TotalNets:41-58IntraArea:4InterArea:0ASE:0NSSA:0#查看SwitchB上OSPF协议的邻居和路由.
displayospfpeerOSPFProcess1withRouterID44.
44.
44.
44NeighborBriefInformationArea:0.
0.
0.
0RouterIDAddressPriDead-TimeInterfaceState192.
168.
1.
4114.
14.
14.
2133Vlan200Full/DRdisplayospfroutingOSPFProcess1withRouterID44.
44.
44.
44RoutingTablesRoutingforNetworkDestinationCostTypeNextHopAdvRouterArea44.
44.
44.
44/320Stub44.
44.
44.
4444.
44.
44.
440.
0.
0.
014.
14.
14.
0/241Transit14.
14.
14.
1192.
168.
1.
410.
0.
0.
022.
22.
22.
22/322Stub14.
14.
14.
2192.
168.
1.
400.
0.
0.
012.
12.
12.
0/242Transit14.
14.
14.
2192.
168.
1.
400.
0.
0.
0TotalNets:4IntraArea:4InterArea:0ASE:0NSSA:0通过上面信息可以看出在SwitchS发生主备倒换的时候,SwitchA和SwitchB的邻居和路由信息保持不变,从SwitchA到SwitchB的流量转发没有受到主备倒换的影响.
1.
13.
10配置路由过滤1.
组网需求所有的交换机都运行OSPF,整个自治系统划分为3个区域.
其中SwitchA和SwitchB作为ABR来转发区域之间的路由.
在SwitchC上配置为ASBR引入外部路由(静态路由),并在SwitchC上配置过滤策略,对引入的一条路由(3.
1.
3.
0/24)进行过滤.
在SwitchA上配置路由策略,对路由(10.
5.
1.
0/24)进行过滤.
2.
组网图图1-17配置路由过滤1-593.
配置步骤(1)配置各接口的IP地址(略)(2)配置OSPF基本功能(同前例1.
13.
1)(3)配置引入自治系统外部路由#在SwitchC上配置一条到目的网段3.
1.
1.
0/24的静态路由.
system-view[SwitchC]iproute-static3.
1.
1.
02410.
4.
1.
2#在SwitchC上配置一条到目的网段3.
1.
2.
0/24的静态路由.
[SwitchC]iproute-static3.
1.
2.
02410.
4.
1.
2#在SwitchC上配置一条到目的网段3.
1.
3.
0/24的静态路由.
[SwitchC]iproute-static3.
1.
3.
02410.
4.
1.
2#在SwitchC上配置OSPF引入静态路由.
[SwitchC]ospf1[SwitchC-ospf-1]import-routestatic[SwitchC-ospf-1]quit#在SwitchA上查看路由信息.
displayiprouting-tableRoutingTables:PublicDestinations:12Routes:12Destination/MaskProtoPreCostNextHopInterface3.
1.
1.
0/24O_ASE150110.
2.
1.
2Vlan2003.
1.
2.
0/24O_ASE150110.
2.
1.
2Vlan2003.
1.
3.
0/24O_ASE150110.
2.
1.
2Vlan20010.
1.
1.
0/24Direct0010.
1.
1.
1Vlan20010.
1.
1.
1/32Direct00127.
0.
0.
1InLoop010.
2.
1.
0/24Direct0010.
2.
1.
1Vlan20010.
2.
1.
1/32Direct00127.
0.
0.
1InLoop010.
3.
1.
0/24OSPF10410.
1.
1.
2Vlan10010.
4.
1.
0/24OSPF101310.
2.
1.
2Vlan20010.
5.
1.
0/24OSPF101410.
1.
1.
2Vlan100127.
0.
0.
0/8Direct00127.
0.
0.
1InLoop0127.
0.
0.
1/32Direct00127.
0.
0.
1InLoop0(4)在SwitchC配置对路由3.
1.
3.
0/24进行过滤#配置IPv4地址前缀列表.
[SwitchC]ipip-prefixprefix1index1deny3.
1.
3.
024[SwitchC]ipip-prefixprefix1index2permit3.
1.
1.
024[SwitchC]ipip-prefixprefix1index3permit3.
1.
2.
024#配置对引入的静态路由信息进行过滤,过滤掉路由3.
1.
3.
0/24.
[SwitchC]ospf1[SwitchC-ospf-1]filter-policyip-prefixprefix1exportstatic#在SwitchA上查看路由信息.
displayiprouting-tableRoutingTables:PublicDestinations:11Routes:11Destination/MaskProtoPreCostNextHopInterface3.
1.
1.
0/24O_ASE150110.
2.
1.
2Vlan2001-603.
1.
2.
0/24O_ASE150110.
2.
1.
2Vlan20010.
1.
1.
0/24Direct0010.
1.
1.
1Vlan10010.
1.
1.
1/32Direct00127.
0.
0.
1InLoop010.
2.
1.
0/24Direct0010.
2.
1.
1Vlan20010.
2.
1.
1/32Direct00127.
0.
0.
1InLoop010.
3.
1.
0/24OSPF10410.
1.
1.
2Vlan10010.
4.
1.
0/24OSPF101310.
2.
1.
2Vlan20010.
5.
1.
0/24OSPF101410.
1.
1.
2Vlan100127.
0.
0.
0/8Direct00127.
0.
0.
1InLoop0127.
0.
0.
1/32Direct00127.
0.
0.
1InLoop0可以看到,到目的网段3.
1.
3.
0/24的路由被过滤掉了.
(5)在SwitchA上配置对路由10.
5.
1.
1/24进行过滤#在SwitchA上配置访问控制列表.
system-veiw[SwitchA]aclnumber2000[SwitchA-acl-basic-2000]rule0denysource10.
5.
1.
00.
0.
0.
255[SwitchA-acl-basic-2000]rule1permitsourceany[SwitchA-acl-basic-2000]quit#配置对通过LSA计算出来的路由信息10.
5.
1.
0/24进行过滤.
[SwitchA]ospf1[SwitchA-ospf-1]filter-policy2000import[SwitchA-ospf-1]quit#在SwitchA上查看路由信息.
[SwitchA]displayiprouting-tableRoutingTables:PublicDestinations:10Routes:10Destination/MaskProtoPreCostNextHopInterface3.
1.
1.
0/24O_ASE150110.
2.
1.
2Vlan2003.
1.
2.
0/24O_ASE150110.
2.
1.
2Vlan20010.
1.
1.
0/24Direct0010.
1.
1.
1Vlan10010.
1.
1.
1/32Direct00127.
0.
0.
1InLoop010.
2.
1.
0/24Direct0010.
2.
1.
1Vlan20010.
2.
1.
1/32Direct00127.
0.
0.
1InLoop010.
3.
1.
0/24OSPF10410.
1.
1.
2Vlan10010.
4.
1.
0/24OSPF101310.
2.
1.
2Vlan200127.
0.
0.
0/8Direct00127.
0.
0.
1InLoop0127.
0.
0.
1/32Direct00127.
0.
0.
1InLoop0可以看到,到10.
5.
1.
1/24的路由被过滤掉了.
1.
13.
11OSPF快速重路由配置举例1.
组网需求如图1-18所示,SwitchS、SwitchA和SwitchD属于同一OSPF区域,通过OSPF协议实现网络互连.
要求当SwitchS和SwitchD之间的链路出现故障时,业务可以快速切换到链路B上.
1-612.
组网图图1-18OSPF快速重路由配置举例3.
配置步骤(1)配置各交换机接口的IP地址和OSPF协议请按照上面组网图配置各接口的IP地址和子网掩码,具体配置过程略.
配置各交换机之间采用OSPF协议进行互连,确保SwitchS、SwitchA和SwitchD之间能够在网络层互通,并且各交换机之间能够借助OSPF协议实现动态路由更新.
具体配置过程略.
(2)配置OSPF快速重路由OSPF支持快速重路由配置有两种配置方法,一种是自动计算,另一种是通过策略指定,两种方法任选一种.
方法一:使能SwitchS和SwitchD的OSPF协议的自动计算快速重路由能力#配置SwitchS.
system-view[SwitchS]bfdecho-source-ip1.
1.
1.
1[SwitchS]ospf1[SwitchS-ospf-1]fast-rerouteauto[SwitchS-ospf-1]quit#配置SwitchD.
system-view[SwitchD]bfdecho-source-ip4.
4.
4.
4[SwitchD]ospf1[SwitchD-ospf-1]fast-rerouteauto[SwitchD-ospf-1]quit方法二:使能SwitchS的OSPF协议的指定路由策略快速重路由能力#配置SwitchS.
system-view[SwitchS]bfdecho-source-ip1.
1.
1.
1[SwitchS]ipip-prefixabcindex10permit4.
4.
4.
432[SwitchS]route-policyfrrpermitnode10[SwitchS-route-policy]if-matchip-prefixabc[SwitchS-route-policy]applyfast-reroutebackup-interfacevlan-interface100backup-nexthop12.
12.
12.
2[SwitchS-route-policy]quit[SwitchS]ospf1[SwitchS-ospf-1]fast-rerouteroute-policyfrr[SwitchS-ospf-1]quit#配置SwitchD.
system-view[SwitchD]bfdecho-source-ip4.
4.
4.
41-62[SwitchD]ipip-prefixabcindex10permit1.
1.
1.
132[SwitchD]route-policyfrrpermitnode10[SwitchD-route-policy]if-matchip-prefixabc[SwitchD-route-policy]applyfast-reroutebackup-interfacevlan-interface101backup-nexthop24.
24.
24.
2[SwitchD-route-policy]quit[SwitchD]ospf1[SwitchD-ospf-1]fast-rerouteroute-policyfrr[SwitchD-ospf-1]quit(3)检验配置效果#在SwitchS上查看4.
4.
4.
4/32网段路由,可以看到备份下一跳信息.
[SwitchS]displayiprouting-table4.
4.
4.
4verboseRoutingTable:PublicSummaryCount:1Destination:4.
4.
4.
4/32Protocol:OSPFProcessID:1Preference:10Cost:1IpPrecedence:QosLcId:NextHop:13.
13.
13.
2Interface:Vlan-interface200BkNextHop:12.
12.
12.
2BkInterface:Vlan-interface100RelyNextHop:0.
0.
0.
0Neighbor:0.
0.
0.
0TunnelID:0x0Label:NULLBKTunnelID:0x0BKLabel:NULLState:ActiveAdvAge:00h01m27sTag:0#在SwitchD上查看1.
1.
1.
1/32网段路由,可以看到备份下一跳信息.
[SwitchD]displayiprouting-table1.
1.
1.
1verboseRoutingTable:PublicSummaryCount:1Destination:1.
1.
1.
1/32Protocol:OSPFProcessID:1Preference:10Cost:1IpPrecedence:QosLcId:NextHop:13.
13.
13.
1Interface:Vlan-interface200BkNextHop:24.
24.
24.
2BkInterface:Vlan-interface101RelyNextHop:0.
0.
0.
0Neighbor:0.
0.
0.
0TunnelID:0x0Label:NULLBKTunnelID:0x0BKLabel:NULLState:ActiveAdvAge:00h01m27sTag:01.
13.
12配置OSPF与BFD联动1.
组网需求SwitchA、SwitchB和SwitchC上运行OSPF,网络层相互可达.
当SwitchA和SwitchB通过L2Switch通信的链路出现故障时BFD能够快速感知通告OSPF协议,并且切换到SwitchC进行通信.
1-632.
组网图图1-19OSPF与BFD联动配置组网图设备接口IP地址设备接口IP地址SwitchAVlan-int1010.
1.
0.
102/24SwitchBVlan-int1010.
1.
0.
100/24Vlan-int1111.
1.
1.
1/24Vlan-int1313.
1.
1.
1/24SwitchCVlan-int1111.
1.
1.
2/24Vlan-int1313.
1.
1.
2/243.
配置步骤(1)配置各接口的IP地址(略)(2)配置OSPF基本功能#配置SwitchA.
system-view[SwitchA]ospf[SwitchA-ospf-1]area0[SwitchA-ospf-1-area-0.
0.
0.
0]network10.
1.
0.
00.
0.
0.
255[SwitchA-ospf-1-area-0.
0.
0.
0]network11.
1.
1.
00.
0.
0.
255[SwitchA-ospf-1-area-0.
0.
0.
0]network121.
1.
1.
00.
0.
0.
255[SwitchA-ospf-1-area-0.
0.
0.
0]quit[SwitchA-ospf-1]quit[SwitchA]interfacevlan11[SwitchA-Vlan-interface11]ospfcost2[SwitchA-Vlan-interface11]quit#配置SwitchB.
system-view[SwitchB]ospf[SwitchB-ospf-1]area0[SwitchB-ospf-1-area-0.
0.
0.
0]network10.
1.
0.
00.
0.
0.
255[SwitchB-ospf-1-area-0.
0.
0.
0]network13.
1.
1.
00.
0.
0.
255[SwitchB-ospf-1-area-0.
0.
0.
0]network120.
1.
1.
00.
0.
0.
255[SwitchB-ospf-1-area-0.
0.
0.
0]quit[SwitchB-ospf-1]quit[SwitchB]interfacevlan-interface13[SwitchB-Vlan-interface13]ospfcost2[SwitchA-Vlan-interface13]quit#配置SwitchC.
system-view[SwitchC]ospf[SwitchC-ospf-1]area0[SwitchC-ospf-1-area-0.
0.
0.
0]network11.
1.
1.
00.
0.
0.
2551-64[SwitchC-ospf-1-area-0.
0.
0.
0]network13.
1.
1.
00.
0.
0.
255[SwitchC-ospf-1-area-0.
0.
0.
0]quit[SwitchC-ospf-1]quit(3)配置BFD功能#在SwitchA上使能BFD检测功能,并配置BFD参数.
[SwitchA]bfdsessioninit-modeactive[SwitchA]interfacevlan-interface10[SwitchA-Vlan-interface10]ospfbfdenable[SwitchA-Vlan-interface10]bfdmin-transmit-interval500[SwitchA-Vlan-interface10]bfdmin-receive-interval500[SwitchA-Vlan-interface10]bfddetect-multiplier7[SwitchA-Vlan-interface10]quit[SwitchA]quit#在SwitchB上使能BFD检测功能,并配置BFD参数.
[SwitchB]bfdsessioninit-modeactive[SwitchB]interfacevlan-interface10[SwitchB-Vlan-interface10]ospfbfdenable[SwitchB-Vlan-interface10]bfdmin-transmit-interval500[SwitchB-Vlan-interface10]bfdmin-receive-interval500[SwitchB-Vlan-interface10]bfddetect-multiplier6(4)检查配置结果下面以SwitchA为例,SwitchB和SwitchA类似,不再赘述.
#显示SwitchA的BFD信息.
displaybfdsessionTotalSessionNum:1InitMode:ActiveSessionWorkingUnderCtrlMode:LD/RDSourceAddrDestAddrStateHoldtimeInterface3/110.
1.
0.
10210.
1.
0.
100Up1700msvlan10#在SwitchA上查看120.
1.
1.
0/24的路由信息,可以看出SwitchA和SwitchB是通过L2Switch进行通信的.
displayiprouting-table120.
1.
1.
0verboseRoutingTable:PublicSummaryCount:1Destination:120.
1.
1.
0/24Protocol:OSPFProcessID:0Preference:0Cost:2IpPrecedence:QosLcId:NextHop:192.
168.
0.
100Interface:Vlan-interface10BkNextHop:0.
0.
0.
0BkInterface:RelyNextHop:0.
0.
0.
0Neighbor:0.
0.
0.
0TunnelID:0x0Label:NULLBKTunnelID:0x0BKLabel:NULLState:ActiveAdvAge:00h58m10sTag:0当SwitchA和SwitchB通过L2Switch通信的链路出现故障时,SwitchA能够快速感知SwitchB的变化.
#查看SwitchA的BFD信息,此时SwitchA和SwitchB的BFD会话已经被删除,没有任何输出信息.
displaybfdsession#在SwitchA上查看120.
1.
1.
0/24的路由信息,可以看出SwitchA和SwitchB已经切换到SwitchC进行通信.
1-65displayiprouting-table120.
1.
1.
0verboseRoutingTable:PublicSummaryCount:1Destination:120.
1.
1.
0/24Protocol:OSPFProcessID:1Preference:10Cost:4IpPrecedence:QosLcId:NextHop:10.
1.
1.
100Interface:Vlan-interface11BkNextHop:0.
0.
0.
0BkInterface:RelyNextHop:0.
0.
0.
0Neighbor:0.
0.
0.
0TunnelID:0x0Label:NULLBKTunnelID:0x0BKLabel:NULLState:ActiveAdvAge:00h58m10sTag:01.
14常见配置错误举例1.
14.
1OSPF邻居无法建立1.
故障现象OSPF邻居无法建立.
2.
分析如果物理连接和下层协议正常,则检查接口上配置的OSPF参数,必须保证与相邻路由器的参数一致,区域号相同,网段与掩码也必须一致(点到点与虚连接的网段与掩码可以不同).
3.
处理过程(1)使用displayospfpeer命令查看OSPF邻居状态.
(2)使用displayospfinterface命令查看OSPF接口的信息.
(3)检查物理连接及下层协议是否正常运行,可通过ping命令测试.
若从本地路由器Ping对端路由器不通,则表明物理连接或下层协议有问题.
(4)检查OSPF定时器,在同一接口上邻居失效时间应至少为Hello报文发送时间间隔的4倍.
(5)如果是NBMA网络,则应该使用peerip-address命令手工指定邻居.
(6)如果网络类型为广播网或NBMA,则至少有一个接口的路由器优先级大于零.
1.
14.
2OSPF路由信息不正确1.
故障现象OSPF不能发现其他区域的路由.
2.
分析应保证骨干区域与所有的区域相连接.
若一台路由器配置了两个以上的区域,则至少有一个区域应与骨干区域相连.
骨干区域不能配置成Stub区域.
在Stub区域内的路由器不能接收外部AS的路由.
如果一个区域配置成Stub区域,则与这个区域相连的所有路由器都应将此区域配置成Stub区域.
3.
处理过程(1)使用displayospfpeer命令查看OSPF邻居状态.
(2)使用displayospfinterface命令查看OSPF接口的信息.
(3)使用displayospflsdb查看LSDB的信息是否完整.
1-66(4)使用displaycurrent-configurationconfigurationospf命令查看区域是否配置正确.
若配置了两个以上的区域,则至少有一个区域与骨干区域相连.
(5)如果某区域是Stub区域,则该区域中的所有路由器都要配置stub命令;如果某区域是NSSA区域,则该区域中的所有路由器都要配置nssa命令.
(6)如果配置了虚连接,使用displayospfvlink命令查看OSPF虚连接是否正常.

RackNerd 2022春节促销提供三款年付套餐 低至年付10.88美元

RackNerd 商家我们应该是比较熟悉的商家,速度一般,但是人家便宜且可选机房也是比较多的,较多集中在美国机房。包括前面的新年元旦促销的时候有提供年付10美元左右的方案,实际上RackNerd商家的营销策略也是如此,每逢节日都有活动,配置简单变化,价格基本差不多,所以我们网友看到没有必要囤货,有需要就选择。RackNerd 商家这次2022农历新年也是有几款年付套餐。低至RackNerd VPS...

触摸云 26元/月 ,美国200G高防云服务器

触摸云触摸云(cmzi.com),国人商家,有IDC/ISP正规资质,主营香港线路VPS、物理机等产品。本次为大家带上的是美国高防2区的套餐。去程普通线路,回程cn2 gia,均衡防御速度与防御,防御值为200G,无视UDP攻击,可选择性是否开启CC防御策略,超过峰值黑洞1-2小时。最低套餐20M起,多数套餐为50M,适合有防御型建站需求使用。美国高防2区 弹性云[大宽带]· 配置:1-16核· ...

青果网络-618阿里云,腾讯云特惠优惠折上折!

官方网站:点击访问青果云官方网站活动方案:—————————–活动规则—————————1、选购活动产品并下单(先不要支付)2、联系我司在线客服修改价格或领取赠送时间3、确认价格已按活动政策修改正确后,支付订单,到此产品开设成功4、本活动产品可以升级,升级所需费用按产品原价计算若发生退款,按资源实际使用情况折算为产品原价再退还剩余余额! 美国洛杉矶CN2_GIACPU内存系统盘流量宽带i...

rip协议为你推荐
ldapserverLDAP3是什么sns网站有哪些中国都有哪些sns网站?还有它们都是哪个类型的?文档下载怎么下载百度文档开放平台微信的开放平台是干什么用的科创板首批名单中国兰男队员名单团购程序团购系统软件有哪些?一般需要考虑那几点?dedecms采集织梦后台怎么采集图片建站之星突唯阿和建站之星等有什么区别?图文模块为什么我的QQ弄了图文模块只出现字没有图片?财务单据会计的单据怎么写
l5520 patcha 个人免费空间 域名转向 域名转接 699美元 qq云端 阿里云官方网站 我的世界服务器ip php服务器 photobucket 国外免费网盘 碳云 空间排行榜 香港打折信息 神棍节 rsync 达拉斯 stealthy ddos攻击工具 更多